

Manual

SD700 Series servo system

VEICHI

Shenzhen Veichi Electric Co., Ltd.

Address: Third Floor, Building ChunSheng, Lingya Industrial Park, No.1 Road, Shiyan Tangtou Community, Bao'an District, Shenzhen

Phone:+86-755-3686 1688 Fax:+86-755-2968 5680

Suzhou Veichi Electric Co., Ltd.

 ${\sf Address}: {\sf No.1000\ Songjia\ road,\ Wuzhong\ Economic\ and\ Technological\ Development}$

Zone, Suzhou Phone:+86-512-6617 1988

10110:10-512-0017 1900

Facebook: https://www.facebook.com/veichiglobal/

Whatsapp: +86- 138 2881 8903

E-mail:overseas@veichi.com Web:http://www.veichi.org

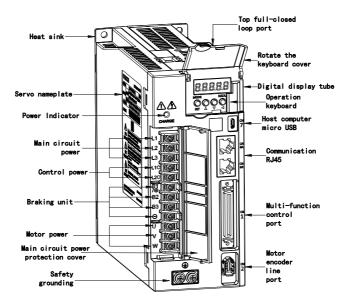
Wechat Official Account

Version: 2020 V1.4
Veichi Electric Co., Ltd.all rights
reserved, subject to change without notice

Contents

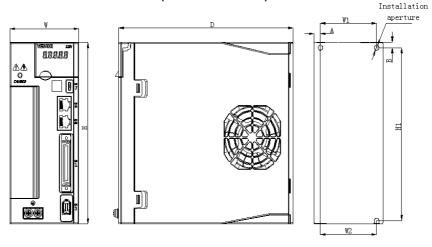
ontents	
Abstract	
1.1 Series Introduction	
1.2 Name of Each Part of the Servo Drive	
1.3 Basic Information of Servo Unit	2
	27
3.7 CN5 Full Closed Loop Port	
5. 2 Position Mode	66
5. 3 Speed Mode	75
5. 4 Torque Mode	82
5. 5 Hybrid Control Mode Selection	86
	Abstract 1.1 Series Introduction 1.2 Name of Each Part of the Servo Drive 1.3 Basic Information of Servo Unit 1.4 System Diagram. 1.5 System Configuration Example. 1.6 Drive Nomenclature 1.7 Maintenance and Inspection of Servo Unit 1.8 Motor Nomenclature. 1.9 Motor Nomenclature. 1.9 Motor Nomenclature. 2.1 Basic Operation. 2.2 Auxiliary Functions Operation of Fn group. 2.3 Parmeter Pn Group's Operation. 2.4 Operations of Monitoring Display Un Group. Wiring and Connections. 3.1 Main Circuit Wiring. 3.2 Motor Power Line Connection. 3.3 CN2 Encoder Connection. 3.4 Brake Wire Connection. 3.5 CN7 USB Communication Terminal. 3.6 Connection of CN6A and CN6B Communition Terminal. 3.7 CN5 Full Closed Loop Port. 3.8 Definition of CN1 Terminal. 3.9 Switch-Value Input Signal. 3.10 Switching Output Signal. 3.11 Connection with the Upper Device. 3.12 Position Control Wiring Diagram. 3.13 Speed Control Wiring Diagram. 3.15 Regenerative Resistor Connection. 3.16 Noise and High Harmonic Countermeasures. Trial operation. 4.1 Inspections and Notes before Trail Operation. 4.2 JOG trail operation. 5. 1 Basic Functions. 5. 2 Position Mode. 5. 3 Speed Mode. 5. 4 Torque Mode.

	5. 6 Other Output Signals	88
	5. 7 Timing Sequence	90
	5. 8 Full closed-loop control	
6	Adjustment	
	6. 1 Adjustments	
	6. 2 Robust Control	
	6. 3 Inertia Recognition	
	6. 4 Intelligent Setting	
	6. 5 Bandwidth Setting	
	6. 6 Manual Adjustment Function	
7	Accessibility	
'	7. 1 List of Auxiliary Functions	
	7.2 Displaying Alarm Logs (Fn000)	
	7.3 Clear Alarm Record (Fn001)	121
	7.4 Software Reset (Fn002)	
	7.5 Restoring Factory Parameters (Fn003)	123
	7.5.1 Overview	123
	7.6 JOG Operation (Fn005)	
	7.7 Program JOG Operation (Fn006)	
	7.8 Automatic Adjustment of Instruction Offset (Fn100)	125
	7.9 Speed command Offset Manual Adjustment (Fn101)	
	7.10 Profile Torque command Offset Manual Adjustment (Fn102)	
	7.11 Current Offset Automatic Adjustment (Fn103)	126
	7.12 Current Offset Manual Adjustment (Fn104)	127
	7.13 Initializing the Detection Value of Vibration Detection (Fn105)	128
	7.14 Bandwidth Settings (Fn303)	
	7.15 EasyFFT (Fn401)	120
ρ	Function Code Instructions	
U	8. 1 The principle of origin return function	
	8. 2 Origin return function code	
	8. 3 Origin return method	
9	Internal location	
9	9. 1 Internal multi-stage position control function code parameter setting	
	9. 2 Internal multi-stage position control related function codes	
	9. 3 Multi-speed function operating parameters	
	9. 4 Interrupt function	
	9. 5 Overlap function	
	9. 6 Stop function	
	9. 7 Jump function	
	9. 8 Jog function	
10		
	10. 1 Basic Control Related Pn0 Group Parameters	
	10. 2 Gain Related Pn1 Group	198
	10. 3 Position Related Pn2 Group Parameters	203
	10. 4 Speed Related Pn3 Group Parameters	210

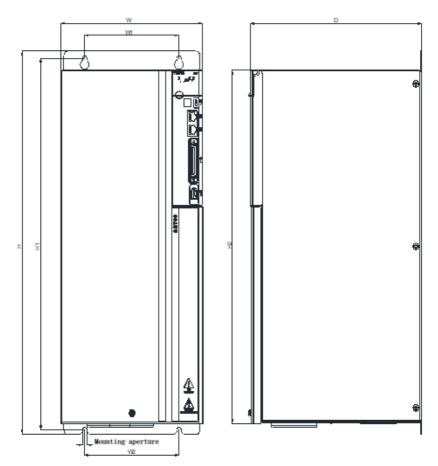

	10. 5 Torque Related Pn4 Group Parameters	. 212
	10. 6 Jogging Related Parameters	. 215
	10. 7 Switch Configuration Related Pn6 Group Parameters	. 216
	10. 8 Pn7 Expansion Related Parameters	. 219
	10. 9 Pn8 group internal position/origin return parameters	. 221
11	Monitoring Parameters	. 227
12	Fault Code and Countermeasures	. 231
	12. 1 Fault Code	. 231
	12. 2 Warning Code	. 238
13	Communication	
	13. 1 Communication introduction	. 239
	13. 2 RS485 communication protocol description	. 239
	13. 3 Communication frame structure	. 239
	13. 4 Command code and communication data description	. 240
	13. 5 Communication frame error check mode:	
	13. 6 Error message response	. 242
14	Host Debugging Instruction	
	14. 1 System Requirements	. 243
	14. 2 Main Interface	. 244
	14. 3 Features	. 245
	14. 4 Real-Time Monitoring	
	14. 5 Auxiliary Functions	
	14. 6 Digital Oscilloscope	
	14. 7 Others	

1 Abstract

1.1 Series Introduction

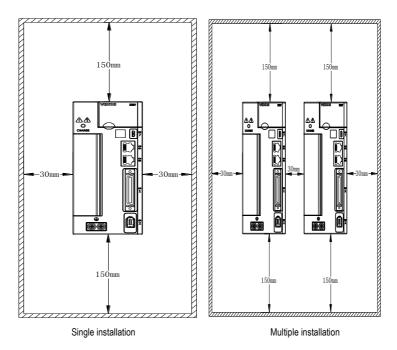

SD700 series servo drives are mainly used for the occasion of high speed, high frequency and high positioning accuracy. The servo unit can maximize the performance of the machine in the shortest time, which can improve the production efficiency. In terms of communication, it supports EtherCAT, MECHATROLINK-II, MECHATROLINK-III, CANopen, RS-485 and other mainstream field buses in the market. At the same time, it also has non-standard application functions such as full closed-loop, electronic cam, flying shear, gantry synchronization and so on. USB can be connected to the host computer for debugging, which is convenient and fast.

1.2 Name of Each Part of the Servo Drive



1.3 Basic Information of Servo Unit

Installation Dimensions (Part of the models)



		Exter	nal size	(mm)	Installation size(mm)						Installation
Structure	Machine model	W	Н	D	W1	W2	H1	H2	Α	В	aperture
	SD700-1R1A-**										
SIZE A	SD700-1R8A-**	45	168	170	\	20	160	\	7.5	5	2-M4
	SD700-3R3A-**										
	SD700-5R5A-**							1	6.5	5	
SIZE B	SD700-7R6A-**	71	168	180	58	58	160				3-M4
	SD700-9R5A-**										
	SD700-2R5D-**										
	SD700-3R8D-**										
	SD700-120A-**							1	5	5	
	SD700-160A-**										
SIZE C	SD700-6R0D-**	92.5	188	182	82.5	75	180				3-M4
	SD700-8R4D-**										
	SD700-110D-**										
	SD700-170D-**										
SIZE D	SD700-240D-**	120	260	210	100	84.5	250	236	\	\	4-M5
	SD700-300D-**										

		External size(mm)			Installation size(mm)				Installation
Structure	Machine model	W	Н	D	W1	W2	H1	H2	aperture
SIZE E	SD700-500D-**	210	471	254	140	140	457	434.5	4-M6
	SD700-600D-**								
	SD700-700D-**	240		310	176	176	544	520	4-M6
SIZE F	SD700-800D-**		558						
	SD700-121D-**								

Installation Method

In order to ensure effective cooling by fans and natural convection, please leave enough space around the drive for heat dissipation during installation. To ensure a good heat dissipation effect, please install a fan above the cabinet where the drive is installed to draw out air. The heat dissipation duct in the body is the air inlet under the cabinet and the air outlet above.

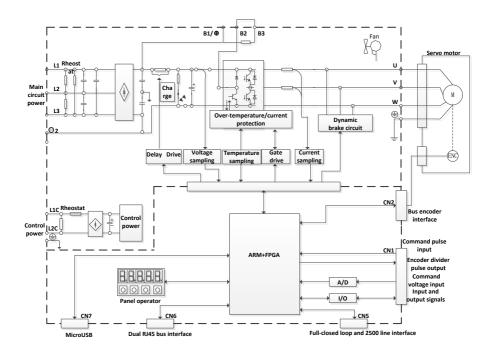
Specifications and Electrical Parameters

Drive specification	1R1A	1R8A	3R3A	5R5A	7R6A	9R5A	2R5D	3R8D
Cabinet volume		Α				В		
Continuous output current Arms	1.1	1.8	3.3	5.5	7.6	9.5	2.5	3.8
Maximum output current Arms	3.9	6.3	11.6	16.5	22.8	23.8	7.5	11.4
Drive specification	2R5D	3R8D	6R0D	8R4D	110D	170D	240D	300D
Cabinet volume			С			D		
Continuous output current Arms	2.5	3.8	6	8.4	11	17	24	30
Maximum output current Arms	7.5	11.4	18	25.2	27.5	42.5	60	70
Drive specification	500D	600D	700D	800D	121D	-	-	-
Cabinet volume				F				
Continuous output current Arms	50	60	70	80	120	-	-	-
Maximum output current Arms	115	120	140	160	240	-	-	-

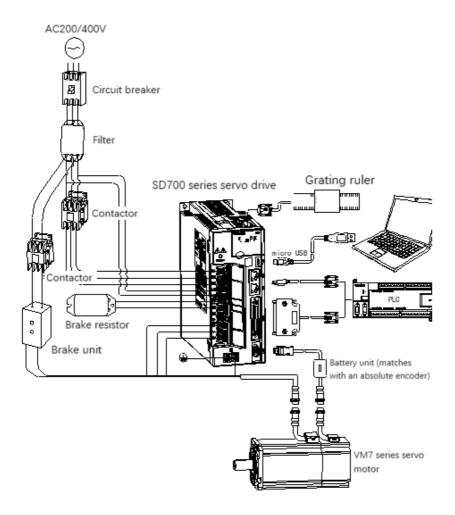
Basic specifications

Project				Specification				
Control mode				IGBT PWM control sine	wave current drive			
Control mode				mode				
Candhaal.	Rotary servo	motor c	ombination		Serial encoder: 17-bit, 23-bit, 24-bit absolute encoder			
Environmental conditions Applicable standard Installation type	Linear servo	motor co	ombination	Incremental grating sca	Incremental grating scale, parallel signal			
	Ambient tem	nerature		-5 ° C to 55 ° C (55 ° C	-5 ° C to 55 ° C (55 ° C to 60 ° C, can be used			
				after lowering the rated	value)			
	Storage temp			-20 ° C ~ 85 ° C				
	Use ambient		/	95% RH or less (no free				
	Storage hum Vibration res			95% RH or less (no free 4.9m/s2	ezing, condensation)			
	Impact streng			19.6m/s2				
	Protection le			Level IP20				
Environmental	1 101000101110	101		Non-corrosive gas, flam	ımable gas			
conditions				Water, oil, and chemica	· ·			
	Cleanliness			Environments with less	•			
				metal powder.	aust, aust, suit, una			
					o 2000m, it is necessary			
	Altitude			to lower the rated value				
	Other			No static interference, s				
	Other			strong magnetic field, radiation, etc.				
Applicable standard				IEC61800-2/-3/-5、 IE	C61000-2/-3/-4			
				Base mounting type	Standard			
Installation type				Shelf mounting type	Need to add accessories			
				1:5000 (the lower limit of	1:5000 (the lower limit of the speed control			
	Speed contro	ol rage		range is the value under the condition that the				
				rated torque load is not stopped)				
		Load	fluctuation	±0.01% of rated speed to 100%)	±0.01% of rated speed (load fluctuation: 0%			
Performance	Speed volatility	Volta	ge fluctuation	±0.01% of rated speed (voltage fluctuation: ± 10%)				
	Volumity	Temn	erature fluctuation	±0.1% of rated speed (temperature				
		·		fluctuation: 25 °C ± 25 °C)				
	Torque contr	ol accura	acy (reproducibility)	±1%				
	Soft start tim	e settina		0s to 30s (acceleration	0s to 30s (acceleration and deceleration can be			
	Cont otart tim	o ootang		set separately)	set separately)			
				Phase A, Phase B, Pha	se C: Linear Drive			
	Encoder divi	ded puls	e output	Output	Output			
				Number of divided pulse	Number of divided pulses: can be set arbitrarily			
				Operating voltage range	e: DC5 V ± 5%			
Input and output				Input points: 1 point				
signal	Sequence in	out	Fixed input		Encoder absolute value data requires input			
	signal			(SEN) signal				
	Jigilai		Assignable input	Operating voltage range	e: DC24V + 20%			
					J. DULTV ± 20/0			
			signal	Input points: 9 points				

6


	ı		1			
			Input method: common collector input, common			
			emitter input			
			Servo ON (/S-ON)			
			Positive limit (P-OT), negative limit (N-OT)			
			Alarm Clear (/ALM-RST)			
			Manual PI-P Control (/P-CON)			
			Torque limit switching (/TLC)			
			Motor rotation direction switching input (/SPD-			
			D) signal			
			Internal set speed switching (/SPD-A, /SPD-B			
			Control mode switching (/C-SEL)			
			Zero fixed (/ZCLAMP)			
			Command pulse inhibit (/INHIBIT)			
			Gain switching (/G-SEL)			
			Command pulse input override switching			
			(/PSEL)			
			(For the detailed list of assignable input signals			
			see 3.9 switch input signals			
			The assignable signal can change the positive			
			negative logic)			
			Operating voltage range: DC5V ~ DC30V			
		Fixed output	Output points: 1 point			
			Output signal: servo alarm (ALM)			
			Operating voltage range: DC5V ~ DC30V			
			Output points: 3 points (3 points, output mode: optocoupler output			
			(isolated))			
			, , , , , , , , , , , , , , , , , , , ,			
	Sequential output					
	signal	Assignable output				
		signal				
		Signal				
			Warning (/WARN)			
			Positioning close (/NEAR)			
			Command pulse input override switching			
			output (/PSELA)			
			(For the detailed list of assignable output			
			signals, see 3.10 switch output signals			
			The assignable signal can change the positive			
			negative logic)			
	Bue	RS-485	Standard			
Communication	Bus communication	CANopen	Optional			
function	(CN6)	M-II	Optional			
	(CINO /	M-III	Optional			

			EtherCAT		Optional			
	USB communication	on	Conne	ecting device	•	er host computer, s droid USB port)	standard, micro-	
	(CN7)	OII		nunication ication	Complia	Compliant with USB2.0 specification (12Mbps)		
Display function					CHARG	E, 8-segment LED	× 5 digits	
Panel operator function	on					witch × 4		
Dynamic brake (DB)						cuit power OFF, se ertravel (OT) action		
Regeneration treatme	ent					can be built in / e		
Overtravel (OT) preve	ention						deceleration stop or OT and N-OT input	
Protective function					overload	rrent, over voltage, I, regenerative faul ection, etc.		
Accessibility						ustment, alarm red n, origin search, el		
		Soft s	tart time	setting	0s to 30s	,	d deceleration can be	
	Speed	Input signal		Command voltage		Maximum input voltage: ±10V (motor forward rotation when positive voltage command) • Rated speed at DC6V [factory setting] Input gain setting can be changed		
	control			Input resistance		About 66kΩ		
				Loop time parameter		30µs		
				Direction of ro	tation	Use /SPD-D signal selection		
		Intern	al set			Use SPD-A/SPD-B signal input (1st to		
		speed control		Speed selecti	on	3rd speed selection)		
Control				Speed Selecti	OH	When both sides are off, the internal		
33.143.					speed is 0 and the servo stops			
			orward ensatior	1	0% ~ 100%			
			·	positioning th setting	0 ~ 1	073741824 Comm	and unit	
	Position control	Position		Instruction Pulse		Command pulse form	Choose one of the following: Symbol + pulse sequence, CW + CCW pulse sequence, 90° phase difference two-phase pulse	
						Input form	Linear drive, open collector	


8

			Maximum input frequency	• Line drive Symbol + pulse sequence, CW+CCW pulse sequence: 4Mpps 90° phase difference two-phase pulse: 1Mpps • Open collector Symbol + pulse sequence, CW+CCW pulse sequence: 200kpps 90° phase difference two-phase pulse: 200kpps
			Input magnification switching	1 to 100 times
		Clear signal	J	Position deviation clear Support linear drive, open collector
Torque Control	Input Signal	Command voltage Input resistance Loop time parameter	forward torque of voltage commander Rated torque a	t voltage: ±10V (for output during positive aid) It DC3V [factory setting] g can be changed

1.4 System Diagram

1.5 System Configuration Example

1.6 Drive Nomenclature

$\frac{SD700-3R3A-PA*}{\frac{A}{B}} \frac{C}{\frac{D}{C}} \frac{D}{\frac{E}{B}} \frac{F}{F} \frac{G}{G}$

Field ID	Field Explanation
Α	SD: Servo product code
В	700: Product series
С	Current class: 1R1: 1.1A
D	Input voltage class: A: 220VAC; D: 400VAC
E	Machine type: P: pulse type; S: standard type; C: CAN open bus type; N: Ether CAT bus type; M: MECHATROLINK-II bus type; L: MECHATROLINK-III bus type; F: Multi I / O type
F	Supported encoder types: A Absolute type
G	Product management number, standard product default.

Different functions between different types:

Code	model	Input pulse	16-bit analog value	Full closed loop	RS485	CAN open	Ether CAT	MECHATROLI NK II	MECHATROLI NK Ⅲ
Р	Pulse type	√	×	√	√	×	×	×	×
S	Standard type	√	√	√	√	√	×	×	×
С	CAN type	√	×	\checkmark	√	\checkmark	×	×	×
N	Ether CAT type	×	×	√	√	x	√	×	×
М	MECHATROLINK II type	×	×	√	√	×	x	V	x
L	MECHATROLINK III type	×	×	V	√	×	×	×	√
F	Multi I / O type	√	×	V	V	×	×	×	×

^{*1.}M-II type refers to the servo unit interface specification for MECHATROLINK-II communication command type

type

Note: Pulse and CANopen type servo are equipped with 12-bit analog quantity as standard.

^{*2.}M-III type refers to the servo unit interface specification for MECHATROLINK-III communication command

The servo system is made up of many parts. The equipment performs its functions only when all the parts work properly. In mechanical parts and electronic parts, some parts need to be maintained depending on the conditions of use. It must be regularly checked or replaced according to the service-time to ensure that the servo motor and servo drive can operate normally for a long time.

Overhaul of Servo Motor

Since the AC servo motor does not have the electric brush so that only a simple daily maintenance is required. The maintenance period in the table is a rough standard. Please judge and determine the most appropriate time for repair according to the conditions of use and use environment.

Inspect items	Inspect time	The essentials of inspection and maintenance	Notes
Vibration and sound confirmation	every day	Tactile and auditory judgments	No increase compared to usual
Appearance overhaul	According to the insult	Erasing with a cloth or cleaning with an air gun	-
Insulation resistance measurement	At least once a year	Disconnect the servo unit and measure the insulation resistance with a 500V megger. Resistance value exceeding 10MΩ is normal	When it is 10MΩ or less, please contact our maintenance department.
Replacement of oil seals	At least once every 5000 hours	Please contact our agents or	Only servo motor with oil seal.
Comprehensive maintenance	At least once every 20,000 hours or 5 years	Please contact our agents or technical support.	-

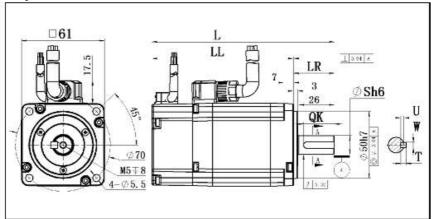
Overhaul of Servo Drive

Although the servo drive unit does not require daily inspections, it should be overhauled more than once a year.

Maintenance project	Inspect time	The essentials of inspection and maintenance	Notes
Appearance maintenance	more than once a	No garbage, dust, oil traces, etc.	Erasing with a cloth or cleaning with an air gun
Loose screws	year	Wiring board, connector mounting screws and so on must not loosen	Please tighten

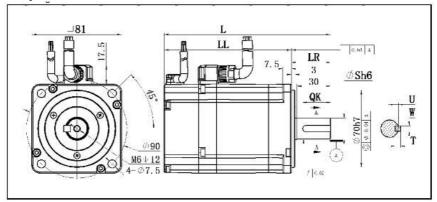
Approximate Standards for Changing Internal Parts of Servo Units

Electrical and electronic parts are subject to mechanical wear and aging. To ensure safety, please do regular inspections. In addition, please refer to the following table for the standard number of years of replacement, and contact our agency or sales office. After the inspection, we will judge whether we need to replace the parts. The servo unit serviced by our company has its user parameters adjusted back to the factory settings. Be sure to reset the user parameters before use by yourself.

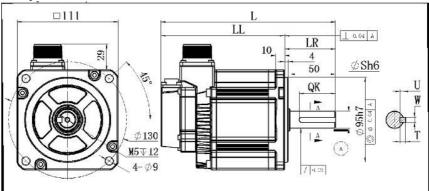

1.8 Motor Nomenclature

$$VM7 - L06A - 1R015 - D1 *$$

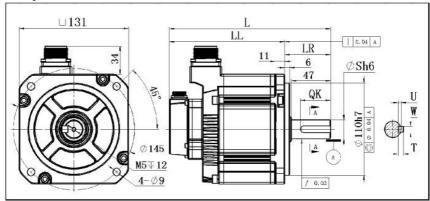
Field identification	Detailed description
A	Product series: VM7
	VM5
	Inertia level:
В	L: Low
Ь	M: Medium
	H: High
	Mounting flange:
	04:40mm 11:110mm
C	06:60mm 13:130mm
	08:80mm 18:180mm
	10:100mm 20:200mm
	26:263mm
D	Rated voltage:
U	A: 220VAC; D: 400VAC; F: 110VAC


Field identification		R75:750W R85: 850W 1R0: 1.0kW 1R2;1.2kW 1R3:1.3kW 1R5:1.5kW 1R8:1.8kW 2R0: 2.0kW 2R3: 2.3kW 2R6: 2.6kW 2R9:2.9kW 4R4:4.4kW 5R5:5.5kW 7R5:7.5kW 011:11kW 015:15kW 020:20kW 022:22kW 030:30kW 037: 37kW 045:45kW 055:55kW Rated speed (RPM) 15: 1500 20: 2000 25: 2500 30: 3000									
	Rated power:										
	R05: 50W	R10: 100W	R20: 200W	R40;400W							
	R60:600W										
E	R75:750W	R85: 850W	1R0: 1.0kW	1R2;1.2kW	1R3:1.3kW						
	1R5:1.5kW	1R8:1.8kW	2R0: 2.0kW	2R3: 2.3kW	2R6: 2.6kW						
	2R9:2.9kW	4R4:4.4kW	5R5:5.5kW	7R5:7.5kW	011:11kW						
	015:15kW	020:20kW	022:22kW	030:30kW	037: 37kW						
	045:45kW	055:55kW									
	Rated speed (RF	PM)									
	15: 1500										
F	20: 2000										
	25: 2500										
	30: 3000										
	Encoder type:										
	D: 23-Bit multi-t	urn absolute value	optical coding								
G	E:24-Bit multi-tur	n absolute value o	ptical coding								
	Q: 17-Bit single	-turn absolute valu	e magnetic coding								
	R: 17-Bit multi-t	urn absolute value	magnetic coding								
	Shaft type:										
Н	1: Key shaft, wi	th threaded hole, w	vith oil seal, without	band brake							
	2: Key shaft, wi	th threaded hole, w	vith oil seal, with bar	nd brake							
I	Internal manager	ment number	-	-							

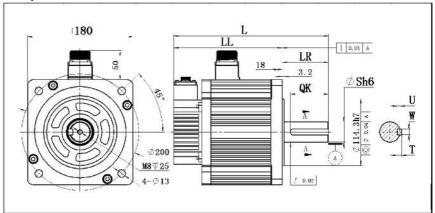
1.9 Motor Nomenclature


Unit:mm

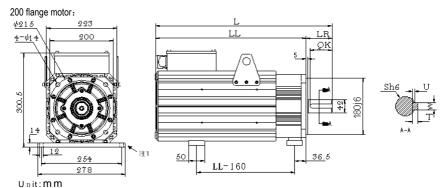
Motor model	L	LL	LR	S	U	W	Т	QK
VM7-L06A-R2030-□1	116	86	30	14	3	5	5	22.5
VM7-L06A-R2030-□2	153	123	30	14	3	5	5	22.5
VM7-L06A-R4030-□1	138	108	30	14	3	5	5	22.5
VM7-L06A-R4030-□2	175	145	30	14	3	5	5	22.5
VM7-L06A-R6030-□1	162	132	30	14	3	5	5	22.5
VM7-L06A-R6030-□2	194	164	30	14	3	5	5	22.5


Unit:mm

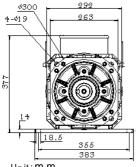
Motor model	L	LL	LR	S	U	W	Т	QK
VM7-L08A-R7530-□1L	151	116	35	19	3.5	6	6	25
VM7-L08A-R7530-□2L	194	159	35	19	3.5	6	6	25
VM7-L08A-R7530-□1	151	116	35	19	3.5	6	6	25
VM7-L08A-R7530-□2	194	159	35	19	3.5	6	6	25
VM7-M08A-R7530-□1L	161	126	35	19	3.5	6	6	25
VM7-M08A-R7530-U2L	205	170	35	19	3.5	6	6	25
VM7-M08A-R7530-□1	161	126	35	19	3.5	6	6	25
VM7-M08A-R7530-□2	205	170	35	19	3.5	6	6	25
VM7-L08A-1R030-□1	174	139	35	19	3.5	6	6	25
VM7-L08A-1R030-□2	207	172	35	19	3.5	6	6	25

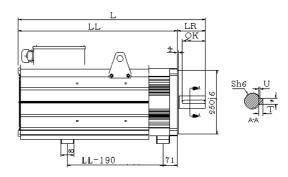

Unit:mm

Motor model	L	LL	LR	S	U	W	Т	QK
VM7-M11A-1R230-□1	193	137	56	19	3.5	6	6	40
VM7-M11A-1R230-□2	227	171	56	19	3.5	6	6	40
VM7-M11A-1R530-□1	213	157	56	19	3.5	6	6	40
VM7-M11A-1R530-□2	247	191	56	19	3.5	6	6	40
VM7-M11A-1R830-□1	218	162	56	19	3.5	6	6	40
VM7-M11A-1R830-□2	252	196	56	19	3.5	6	6	40


Unit:mm

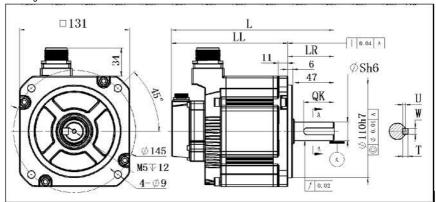
Motor model	L	LL	LR	S	U	W	Т	QK
VM7-M13 - R85151	192	137	55	22	4	8	7	36
VM7-M13 - R8515- 2	229	174	55	22	4	8	7	36
VM7-M13 = -1R020-=1	192	137	55	22	4	8	7	36
VM7-M13□-1R020-□2	229	174	55	22	4	8	7	36
VM7-M13 - 1R5201	207	152	55	22	4	8	7	36
VM7-M13 - 1R5202	244	189	55	22	4	8	7	36
VM7-M13 - 1R815- 1	222	167	55	22	4	8	7	36
VM7-M13 1R815 2	259	204	55	22	4	8	7	36
VM7-M13 - 2R0201	222	167	5 5	22	4	8	7	36
VM7-M13 - 2R0202	259	204	5 5	22	4	8	7	36
VM7-M13 - 2R3151L	257	202	5 5	22	4	8	7	36
VM7-M13 - 2R315 2L	299	244	5 5	22	4	8	7	36
VM7-M13 - 2R6251L	222	167	5 5	22	4	8	7	36
VM7-M13 - 2R625- 2L	259	204	5 5	22	4	8	7	36
VM7-M13 - 3R8251	272	217	5 5	22	4	8	7	36
VM7-M13 = - 3R825 - = 2	314	259	5 5	22	4	8	7	36


Unit: m m


Motor model	L	LL	LR	S	U	W	Т	QK
VM5-M18D-2R915-□1	264	185	79	35	5	10	8	65
VM5-M18D-2R915-□1H	264	185	79	35	5	10	8	65
VM5-M18D-2R915-□2	325	246	79	35	5	10	8	65
VM5-M18D-2R915-□2H	325	246	79	35	5	10	8	65
VM5-M18D-4R415-□1	288	209	79	35	5	10	8	65
VM5-M18D-4R415-□1H	288	209	79	35	5	10	8	65
VM5-M18D-4R415-□2	371	292	79	35	5	10	8	65
VM5-M18D-4R415-□2H	371	292	79	35	5	10	8	65
VM5-M18D-5R515-□1	325	246	79	35	5	10	8	65
VM 5-M18D-5R515-□2	371	292	79	35	5	10	8	65
VM5-M18D-7R515-□1	371	292	79	35	5	10	8	65
VM 5-M18D-7R515-□2	427	348	79	35	5	10	8	65

Motor model	L	LL	LR	S	U	W	Т	QK
VM7-M20D-01115-□1FN	451	369	82	42	4	12	8	70
VM7-M20D-01515-□1FN	488	406	82	42	4	12	8	70
VM7-M20D-02015-□1FN	560	478	82	42	4	12	8	70
VM7-M20D-02215-□1FN	607	525	82	42	4	12	8	70

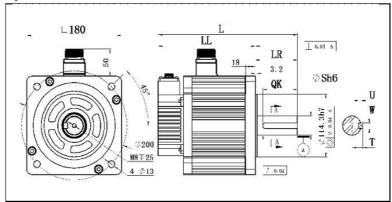
Note 1: 200 flange motor grounding plate set (optional) Model: SI18 Material code: 6010000008



Unit: m m

Motor model	L	LL	LR	S	U	W	Т	QK
VM7-M26D-03015-□1FN	640	530	110	48	4.5	14	9	90
VM7-M26D-03715-□1FN	684	574	110	48	4.5	14	9	90
VM7-M26D-04515-□1FN	727	617	110	48	4.5	14	9	90
VM7-M26D-05515-□1FN	795	685	110	48	4.5	14	9	90

Note 2: 263 flange motor grounding plate set (except vm7-m26d-05515, other models are optional) Model: S25F Material code: 2800050433


130 flange B shaft motor:

Unit:mm

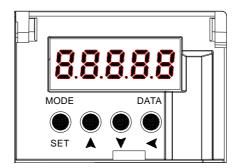
Motor model	L	LL	LR	S	U	W	Т	QK
VM7-M13-R8515-B	192	137	55	19	3.5	6	6	25
VM7-M13-R8515-B	229	174	55	19	3.5	6	6	25
VM7-M13-1R815-B	222	167	55	24	4	8	7	36
VM7-M13-1R815-B	259	204	55	24	4	8	7	36

180 flange B shaft motor:

Unit:mm

O. C. T.								
Motor model	L	LL	LR	S	U	W	Т	QK
VM5-M18D-5R515-¤1BH	359	246	113	42	5	12	8	96
VM5-M18D-5R515-¤2BH	405	292	113	42	5	12	8	96
VM5-M18D-7R515-¤1BH	405	292	113	42	5	12	8	96
VM5-M18D-7R515-¤2BH	461	348	113	42	5	12	8	96

2 Panel operation

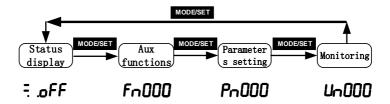

2.1 Basic Operation

2.1.1 Keys' Names and Functions of the Panel Operator

The panel operator consists of panel monitor and keys.

The panel operator could display condition, operate the accessory functions, set parameters and monitor the motions of the drive unit.

The panel operator keys' names and functions are shown as below:

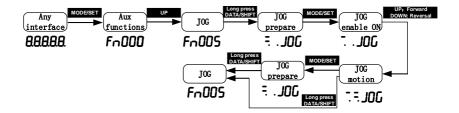

Keys' name	Functions
	Shift the function modes
MODE/SET key	Confirm parameter settings
	Operate the accessory functions
▲JP key	Select parameters up or increase the value, switch between high, medium, and low segment values in multiple segment display parameters
▼ DOWN key	Select parameters down or decrease the value, switch between high, medium, and low segment values in multiple segment display parameters
DATA/SHIFT key	Press and hold the DATA/SHIFT button for about 1 second to enter or exit
	Short press to move to the left one (when flashing)

Pressing the Up and Down keys at the same time could reset the drive alarm, but remember to exclude causes of the alarm before reset the drive alarm.

2.12 Functions Switch

Press the MODE/SET key, the function will be switched like this shown as below:

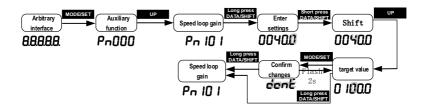
2.1.3 Status Display


The method of judging the status display is as follows:

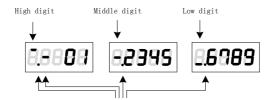
<u>- </u>	Displ ay	1 Meaning		spl .y	Meaning
	oFF	Means that the drive is OFF		oŁ	Means that the input signal (N-OT) is an open circuit
	on	Means that the drive is ON	s ON (90		Flashing displays fault code, more details on the "fault code"
	Pot	Means that the input signal(P-OT) is an open circuit		on \$E	No-motor testing function displays the running status alternately, more details in this function
	Disp lay	Meaning		Disp lay	Meaning
	98	It lights on when the control pow is ON and lights off when OFF	ver	8.8	It lights on when the main circuit is ON and lights off when OFF
	-	Speed control: speed outputs(/V-CMP) are absolutely same Position control: it lights on when the positioning is OK(/COIN) Torque control: it lights on all the time It lights on when the drive is OFF and lights off when ON		8.8.	It lights on when the rotation detection outputs (/TGON)
•	8.8.			8.8.	Speed control: it lights on when the speed command inputs Position control: it lights on when the position command inputs
				8.8.	Torque control: it lights on when the torque command inputs Position control: it lights on when the pulse clear signal outputs

2.2 Auxiliary Functions Operation of Fn group

Auxiliary functions are about performing the settings and adjustment of the drive unit. The panel operator displays the numbers which begin with Fn.


Let's take the JOG function (Fn005) as an example to explain the operating method of the auxiliary functions:

2.3 Parmeter Pn Group's Operation


(1) When the setting range is within 5-digit numbers.

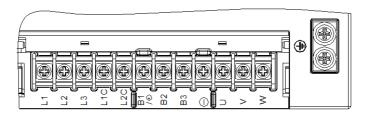
Taking the setting method when the setting value of speed loop gain (PN101) is changed from 40.0 to 100.0 as an example to illustrate the operation method of parameter group.

(2) When the setting range is beyond 6-digit numbers:

Since the panel operator can only display 5 digits, the setting value above 6 digits is shown in the figure below.

They appear only when the number is a negative

2.4 Operations of Monitoring Display Un Group

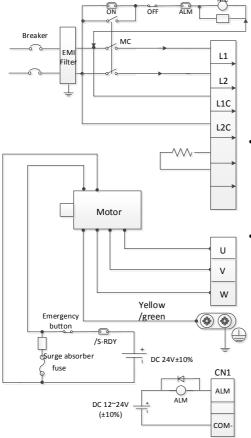

This function could monitor setting command values of the drive unit, the status of input and output signals and internal conditions of the drive unit. The panel operator displays the numbers which begin with Un, then let's take this function as an example to explain the operating method of the monitoring display: when the motor speed (Un000) is 3000rpm:

If you need the digital tube to automatically display relevant information after each power on of the driver, please set the parameter PN003 (default 0xFFF) as the relevant value. For example, if the drive needs to display the motor speed automatically after power on, you can set PN003 to 00000 (motor speed). For the setting values corresponding to each monitoring information, see "monitoring display"

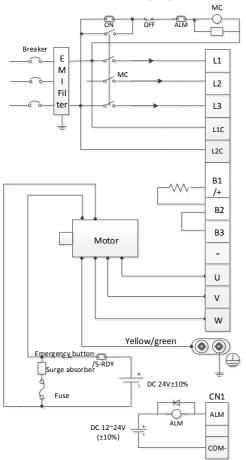
3 Wiring and Connections

3.1 Main Circuit Wiring

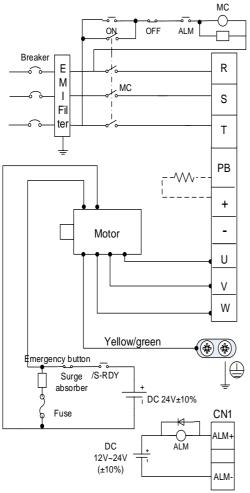
3.1.1 Terminals Explanation:


Needle code	Signal name	Functions
1	L1 (R/L)	Main circuit power input
2	L2 (S/N)	Main circuit power input
3	L3 (T)	Main circuit power input
4	L1C	Control power input
5	L2C	Control power input
6	B1/+	Internal and external braking resistor pins/ DC power supply positive,after rectification
7	B2(PB)	Energy-consumption braking output
8	В3	Pin of internal brake resistor
9	-	Negative of DC power supply
10	U	Motor power U phase
11	V	Motor power V phase
12	W	Motor power W phase
Casing	Grounding	Safely grounding

The A volume main circuit wiring can only be connected to single phase (provide two terminals), please pay attention to the correct wiring according to the wiring identification when wiring.

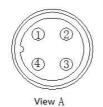

3. 1. 2 Wiring Diagram

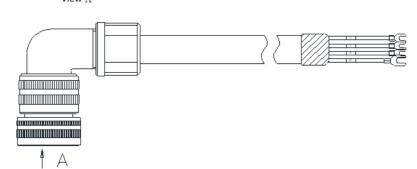
A-volume single-phase wiring diagram

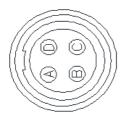

- Please make this emergency stop protection circuit
- Electromagnetic contactor package surge absorbing device at both ends.
- 220V system input voltage range: AC 220V(-15%)~240(+10%)
- 400V system input voltage range: AC 380V(-15%)~440(+10%)
- When using an external regenerative braking resistor, connect it by the dotted line in the figure.
- Please connect the U, V, W, and output of the drive correctly according to the motor cable phase sequence of the servo motor. The wrong phase sequence will cause the drive to malfunction.
 - Be sure to ground the servo drive to avoid electrical damage.
 - The 24V power supply for electromagnetic braking needs to be provided by the user and must be isolated from the 12~24V power supply for the control signal.
 - Pay attention to the connection of the freewheeling diode. Reversing the positive and negative poles may damage the driver.

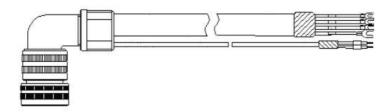
B/C/D-volume three-phase wiring diagram

- Please make this emergency stop protection circuit.
- Electromagnetic contactor package surge absorbing device at both ends.
- 220V system input voltage range: AC 220V(-15%)~240(+10%)
- 400V system input voltage range: AC 380V(-15%)~440(+10%)
- Please connect the U, V, W, and output of the drive correctly according to the motor cable phase sequence of the servo motor. The wrong phase sequence will cause the drive to malfunction.
- Do not disconnect short wires between B2 and B3 unless using an external regenerative braking resistor.
- When using an external regenerative braking resistor, disconnect the short wiring between B2 and B3 and connect them by the dotted line in the figure.
- Be sure to ground the servo drive to avoid electrical damage.
- The 24V power supply for electromagnetic braking needs to be provided by the user and must be isolated from the 12~24V power supply for the control signal.
- Pay attention to the connection of the freewheeling diode. Reversing the positive and negative poles may damage the driver.

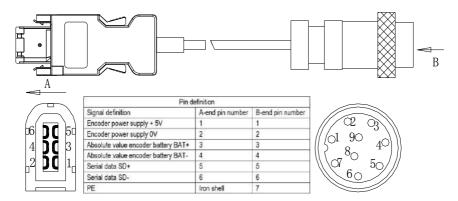

E/F-volume three-phase wiring diagram


- Please make this emergency stop protection circuit.
- Electromagnetic contactor package surge absorbing device at both ends.
- 400V system input voltage range: AC 380V(-15%)~440(+10%)
- Please connect the U, V, W, and output of the drive correctly according to the motor cable phase sequence of the servo motor. The wrong phase sequence will cause the drive to malfunction.
- When using external regenerative resistor, connect according to the dotted line in the figure (Pb / +).
 - Be sure to ground the servo drive to avoid electrical damage
- The 24V power supply for electromagnetic braking needs to be provided by the user and must be isolated from the 12~24V power supply for the control signal.
- Pay attention to the connection of the freewheeling diode.
 Reversing the positive and negative poles may damage the driver.


3.2 Motor Power Line Connection



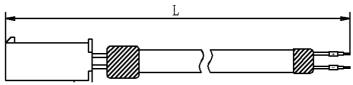
Definition	of 40 / 60 / 80 flange mo	tor power line
Signal definition	Core color	
U	D	Blue
V	E	Brown
W	F	Red
PE	G	Yellow-green


Definition of 100 / 110 / 130 / V5 series 180 flange motor power line						
Signal definition A-end pin number Core color						
U	D	Blue				
V	E	Brown				
W	F	Red				
PE	G	Yellow-green				

	Definition of D2M+VM7 series D2 180 flange motor power line				
	Signal definition	pin number	Core color		
	U	D	Blue		
(OBO)	V	E	Brown		
((F) (E) (D)	W	F	Red		
//DBD//	/ PE	G	Yellow-green		
	BAKE+	Α	Red		
	BAKE-	В	Black		

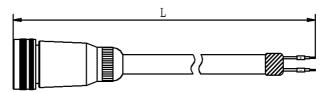
	Power line definition of 110 / 130 flange motor with brake			
	Signal definition	pin number	Core color	
A H G	U	F	Blue	
	V	I	Brown	
	W	В	Red	
	PE	E	Yellow-green	
	BAKE+	G	Red	
	BAKE-	Н	Black	

3.3 CN2 Encoder Connection

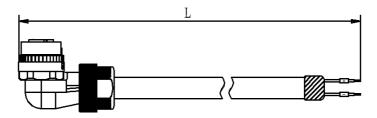


Note:

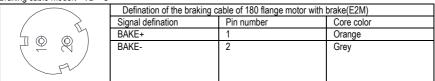
- 1. When welding the encoder, please pay attention to the definition of A-end and B-end pins (as shown in the table above). The encoder wire uses twisted pair shielded wire, and the shielding layers at both ends of the wire should be grounded.
- 2. When using the multi-turn absolute encoder, please pay attention to the positive and negative electrodes of the battery. It is recommended to use the lithium battery with rated voltage of 3.6V and rated capacity of 2.7AH.


3.4 Brake Wire Connection

	Mounting flange	Braking power	Mounting flange	Braking power
Γ	40 Flange	7W	110 Flange	15W
Γ	60 Flange	10W	130 Flange	20W
Г	80 Flange	15W	180 Flange	30W


Braking cable model: VB-*-B*

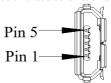
Defination of the braking cable of 40 /60 /80 flange motor with brake			
Signal defination	Pin number	Core color	
BAKE+	1	Orange	
BAKE-	2	Grey	



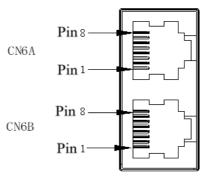
Braking cable model: VB-*-D*

Defination of the braking cable of V5 series 180 flange motor with brake(D2)			
Signal defination	Pin number	Core color	
BAKE+	1	Orange	
BAKE-	2	Grey	

Braking cable model: VB-*-C*



110 flange and 130 flange, as well as VM7 series 180 flange motors with brake hold brake wire and power line together (9 pins), we only need to select the matching power line


3.5 CN7 USB Communication Terminal

Note: ordinary Android cable with data transmission function can also be used

Pin number	Name	Function
1	VBUS	External power supply + 5V
2	D-	Data-
3	D+	Data+
4	-	None
5	GND	Signal ground

3.6 Connection of CN6A and CN6B Communition Terminal

According to different models, the definition of the port is different. When using it, you need to confirm the model before defining the interface. For model identification, please refer to "1.6 driver naming".

The field identification bit E is P: pulse type; S: standard type; C: CANopen bus type.

	CN6A/CN6B port defination						
Pin number	Signal name	Function	Pin number	Signal name	Function		
1	CANH	CAN Data+	6	=			
2	CANL	CAN Data -	7	GND	485 Signal ground		
3	CANG	CAN Signal ground	8	-	-		
4	485-	485 Data -	Shell	Shield	Shield		
5	485+	485 Data +					

The field identification bit F is M: MECHATROLINK-II bus type

1110 11010 1	The hold identification bit 2 to in. M2011/11/1021/1/11 but type.							
	CN6A/CN6B port defination							
Pin number Signal name Function Pin number Signal name Function								
1	SRD+	M-II Data +	6	-	-			
2	SRD-	M-II Data -	7	-	-			

3	-	-	8	-	-
4	-	-	Shell	Shield	Shield
5	-	-			

The field identification bit E is E: EtherCAT bus type; L: MECHATROLINK-III bus type.

	CN6A/CN6B port defination						
Pin number	Signal name	Function	Pin number	Signal name	Function		
1	TX+	Data transmission+	6	RX-	Data reception -		
2	TX-	Data transmission-	7	-	-		
3	RX+	Data reception +	8	-	-		
4	-	=	Shell	Shield	Shield		
5	-	-					

As for using multiple drivers at the same time, the cascade mode is CN6A in and CN6B out. Failure to follow the cascade mode of up in and down out may lead to abnormal communication. Please try to ensure that the length of the cascaded cable is less than 50cm, and the CN6B of the last one should be connected with the terminal resistance (Only CANopen bus/ Mechatrolink-II bus/ RS-485 bus should be considered with terminal resistance).

3.7 CN5 Full Closed Loop Port

	2500 line encoder and full closed loop interface (differential input)								
Pin number	Signal name	Function	Pin number	Signal name	Function				
1	EA-	Full closed loop signal EA-	9	•	-				
2	EB-	Full closed loop signal EB-	10	=	-				
3	EZ-	Full closed loop signal EZ-	11	-	-				
4	-	=	12	-	-				
5	-	=	13		Facedon news				
6	EA+	Full closed loop signal EA+	14	0V	Encoder power supply 0V				
7	EB+	Full closed loop signal EB+	15	5V	Encoder power supply 5V				
8	EZ+	Full closed loop signal EZ+	Shell	Shield	-				

3.8 Definition of CN1 Terminal

			1	SG	Signal ground				26	/SO1-	General sequence
2	SG	Signal ground			Olgridi ground	27	/SO2+ (TGON	004001100	20)	control output 2
4	SEN	Requirement input of encoder absolute data	3	PL1	OC power output of command pulse	29	/SO3+ (S- RDY+)	General Sequence control	28	/SO2- (TGON-)	General sequence control output 2
	60	(SEN)	5	V-REF	Speed command input	31	ALM+	output 3 Servo alarm	30	/SO3- (S-RDY-)	General sequence control output 3
6	SG	Signal ground	7	PULS	Pulse command input	31	ALIVI+	output A phase of	32	ALM-	Servo alarm output
8	/PULS	Pulse command input	9	T-REF	Torque command input	33	PAO	encoder pulse division output	34	/PAO	A phase of encoder pulse division output
10	SG	Signal ground	11	SIGN	Sign	35	РВО	B phase of encoder pulse division output	36	/PBO	B phase of encoder pulse
12	/SIGN	Sign command			input OC power	37	STO	Safe torque limit			division output General
14	/CLR	input Clearance input of position deviation	13	PL2	output of command pulse	39	/SI9	General sequence control input 9	38	/SI8	sequence control input 8
16	ОСР	OC power input of command pulse	15	CLR	Clearance input of position deviation	41	/SI3 (P- CON)	General sequence control input 3	40	/SI0 (/S-ON)	General sequence control input 0
18	PL3	OC power output of command	17	ocs	OC input of pulse direction	43	/SI2 (N-OT)	General sequence control input 2	42	/SI1 (P-OT)	General sequence control input 1
		pulse	19	PCO	C phase of encoder				44	/SI4 (/ALM-	General sequence
20	/PCO	C phase of encoder pulse division	19	PC0	pulse division output	45	/SI5 (/P-CL)	General sequence	44	RTS)	control input 4
22	BAT-	output Battery(-) of absolute	21	BAT+	Battery(+) of absolute encoder	47	+24VIN	Power input of sequence	46	/SI6 (/N-CL)	General sequence control input 6
		encoder OC input of	23	ocz	OC output of Z phase pulse division			control input signal Position output of	48	PSO	Position output of absolute encoder
24	ocs	pulse clearance	25	/SO1+ (V- CMP+)	General sequence control output 1	49	/PSO	absolute encoder	50	ТН	Overheat protection input of linear motor

When tightening the screw of cN1 terminal, the torque shall not be greater than 0.2N. M, otherwise, the screw will slide $\frac{1}{2}$

3.9 Switch-Value Input Signal

3.9.1 Input Signal Explanation

Control	Signal name	Needle number		Function number and description		
	/S-ON		0x01	Control signal of servo motor ON/OFF (power on/off)		
	POT		0x02	Prohibited forward rotation When the mechanical movement exceeds the movable range, stop the servo motor drive (over travel prevention function)		
	NOT		0x03	Prohibited reverse rotation When the mechanical movement exceeds the movable range, stop the servo motor drive (over-travel prevention function)		
	/ALM-RST		0x04	Alarm clear		
	/P-CON		0x05	When the P action command signal is ON, the speed control loop is switched from PI (proportional, integral) control to P (proportional) control.		
	/TLC	Allocated signal	0x06	Torque limit switching use when changing the torque limit during operation		
	/SPD-D	(38~46)	0x08	used to change the direction of motor control in internal speed,		
Mannal	/SPD-A		0x09	When used as internal speed mode, it is used to		
Normal	/SPD-B		0x0A	select the internal speed command		
	/C-SEL		0x0B	Control mode switching, it is used as a switching control mode when the control mode is mixed mode		
	/ZCLAMP		0x0C	Zero fixed signal speed mode, it is used as a fixed zero.		
	/INHIBIT		0x0D	Pulse input inhibit when used in position mode, it is used as disable pulse input count		
	/G-SEL		0x0E	Gain switching gain switching to manual gain switching used as a switching gain		
	/PSEL		0x10	Command pulse input rate switch, when in position mode, it is used to switch pulse input rate signal		
	+24VIN	47	supply. Operating vown +24V	the sequence signal is input with the control power voltage range: +11V to +25V (please provide your power supply.)		
	BAT+ BAT-	21 22		ery connection pin for absolute encoder. ot connect when using an encoder cable with a k.		
Speed	V-REF	5 (6)		peed command. Maximum input voltage: ± 10V		
Position	PULS /PULS SIGN /SIGN	7 8 11 12	Set any of the following input pulse patterns. Symbol + pulse sequence CW+CCW pulse sequence 90° phase difference 2-phase pulse			
	CLR /CLR	15 14	Clear positi	on deviation during position control		
Torque	T-REF	9 (10)	Enter the to ±10V	orque command and the maximum input voltage:		

3.9.2 Input Signal Configuration

1. The digital input signal distribution mode is internally fixed (Pn600=0). The function servo unit of each input signal is internally fixed and cannot be changed. When selecting different control modes, the functions of the pins are different as shown in the following table:

Control mode								
(Pn000)	40	42	43	41	44	45	46	38/ 39
0- position control				/P-CON proportional control		/TLC torque limit switching	Reserved	Invalid
1- analog speed	-			propo		orque		
2- torque control						-		
3- internal speed	-			L.		uc	uo	
4- internal speed <-> analog speed				/SPD-D internal speed mmand directic selection		/SPD-A internal speed command selection A	/SPD-B internal speed command selection B	
5- internal speed				/SPD-D ernal sper nand dire selection			/SPD-B ernal spec nand sele B	
<-> position 6- internal speed	ple	, =	. <u>≠</u>	erse lim	ALM-RST alarm clear		/ inter	
<-> torque	o ena	d lim	e lii				8	
7- position <-> analog speed	servo enable	P-OT forward limit	revers				Reserved	
8- position <-> torque	NO-S/	P-OT	N-OT	/C-SEL control mode switching				
9- torque <->	શ)/ cont sw	⋖			
analog speed						hing		
10- speed <-> speed control with zero fixed function			/ZCLAMP zero fixed		/TLC torque limit switching			
11- speed <-> position control with command pulse inhibit function				//NHIBIT command pulse prohibition		עדכ		

^{2.} The switching input signal distribution mode is the parameter configuration (Pn600=1 default parameter). The function of each input signal is configured by the user and is set by parameters Pn601~Pn609.

(a) Default setting

•	Function code	NO. of CN1 pins	Default function		
	Pn601	40	0x01: Servo enable		

Pn602	42	0x02: Can run in forward direction
Pn603	43	0x03: Can run in reverse direction
Pn604	41	0x05: Manual P, PI control
Pn605	44	0x04: Alarm clear
Pn606	45	0x06: Torque limit switching
Pn607	46	0x07: Reserved
Pn608	39	0x00: Invalid
Pn609	38	OXOO. IIIValiu

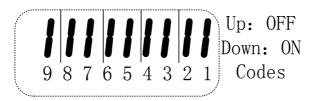
(b) Negation

The driver provides reverse input signal switching function in order to facilitate wiring:

- 1. Take the servo enable (/S-ON) as an example, the default setting is Pn601=0x01. When the signal is ON, the servo is enabled. When the setting is Pn601=0x101, the servo is disabled when the signal is ON.
- 2. Take the positive travel limit (POT) as an example, the default setting is Pn602=0x02. When the signal is OFF, the servo positive stroke limit is set. If the setting is Pn602=0x102, the servo forward stroke limit is released when the signal is OFF.

- 1. Signal ON: The state when the digital input signal (/S-ON, etc.) is connected to the ground terminal of the external +24 VIN power supply
- Signal OFF: The status when the digital input signal (/S-ON, etc.) is disconnected from the ground terminal of the external +24VIN power supply
- 7 3. The positive travel limit (POT)/negative travel limit (NOT) in the digital input signal is the OFF valid signal, and the other input signal is the ON effective signal.

c) Always valid


Through the setting of parameters Pn610, Pn611 and Pn612, the configured input signal can always be valid. For example, when Pn610=0x01 (servo enable), the servo is always in the enabled ON state after power-on, and the external enable signal (/ S-ON) does not take effect.

If the same function is configured on different pin numbers, Er.040 will be reported (parameter setting error alarm). Refer to "Diagnostics Codes and Countermeasures" for related alarms and processing methods.

3.9.3 Confirming the Input Status

The status of the input signal can be checked by input signal monitoring (Un100). The Un100 segment display and corresponding pin numbers are as follows:

Display LED	Number of input pin	Signal name (factory configuration)		
1	CN1-40	/S-ON		
2	CN1-41	/P-CON		
3	CN1-42	P-OT		
4	CN1-43	N-OT		
5	CN1-44	/ALM-RST		
6	CN1-45	/TLC		
7	CN1-46	Reserved		
8	CN1-39	Invalid		
9	CN1-38	Invalid		

The upper SEG (LED) lights up when the input signal is OFF.

The lower SEG (LED) lights up when the input signal is ON.

The value (address: 0XE100) read over the communication is hexadecimal, for example, the read value is 0x1FE. Under the default input configuration, it means that the input of /S-ON (CN1-40) is ON, that is, servo enable, and the input of other input pins is OFF.

3.10 Switching Output Signal

3.10.1 Output Signal Explanation

Control mode	Signal name	Needle number	Function number and explanation			
	/TGON		0x03	ON (closed) when the speed of the servo motor is higher than the set value.		
	/S-RDY		0x00	ON (closed) when servo ON (/S-ON) signal is acceptable.		
	/CLT		0x04	Torque limit ON (closed) when the motor output torque is limited.		
Usual	/VLT		0x05	In the speed limit, the motor speed is ON after closing the speed limit (closed).		
	/BK	Allocate Allocated	0x06	Brake interlocking, the output of the motor is ON during operation. Refer to "Retaining the brake" for timing details.		
	/WARN	signal	0x07	Warning output		
Speed	/V-CMP	25(+) 26(-) 27(+) 28(-) 29(+) 30(-)	0x02	Consistent speed output ON when the speed of the servo motor is the same as the command speed (closed).		
	/COIN	29(+) 30(-)	0x01	Positioning completed output ON (closed) when the difference between the command pulse number and the servomotor movement amount (position deviation) is lower than the position reach range.		
	/PSELA		0x09	Command pulse override switching can be switched to operate with the value of the input command pulse n times (Pn203).		
Location	/NEAR		0x08	Positioning close, output ON (closed) when the difference between the positioning command pulse number and the servo motor movement amount (position deviation) is lower than the position proximity signal.		
	PL1 PL2 PL3	3 13 18	Position p	ulse is power supply for open collector command.		
ALM+ ALM-		31(+) 32(-)	OFF (disc	onnected) at alarm (Output logic can be changed by parameter)		
•	PAO /PAO	33 34	Frequency division output A phase signal			
Usual	PBO /PBO	35 36	Frequency	Frequency division output B phase signal		
	PCO /PCO	19 20	Frequency division output C phase signal			

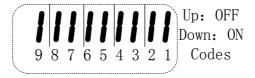
3.10.2 Output Signal Configuration

a) Default configuration

The function of each output signal is configured by the user and is set by parameters Pn613 ~ Pn615. The default functions are as follows:

Function code	CN1 pin number	Default function
Pn613	25/26	0x00: Servo ready
Pn614	27/28	0x01: Positioning completed
Pn615	29/30	0x02: Consistent speed

b) Negation


- General switch output signal inversion function, take the servo ready signal (/S-RDY) as an example, default setting Pn613=0x00, servo ready and then the output signal is ON; change the setting Pn613=0x100, the servo is ready, then the output signal is OFF.
- 2. The alarm output signal (ALM) is the output of the fixed pin number. The default setting is Pn622.1=0. If the servo alarm occurs, the output signal will be OFF. If the change is set to Pn622.1=1, the servo alarm will output the signal ON.

- 1. Pn622.1 indicates the first bit of parameter Pn622. Refer to function code parameter explanation for details. 2. The signal that is not output is in the "invalid" state. Example speed control, positioning complete (/COIN) signal is "invalid"
- 3. If the polarity of the brake signal (/BK) is reversed and used with positive logic, the brake will not be actuated when the signal line is broken. If you have to use this setting, be sure to check the operation to ensure that there are no safety issues.
- 4. When multiple signals are distributed on the same output circuit, the output will be XORed.

3.10.3 Confirming the Output Status

The status of the output signal can be confirmed by the output signal monitor (Un101). The Un101 segment display and corresponding pin numbers are as follows:

Display LED	The number of input pin	Signal name (factory setting)
1	CN1-31、32	ALM
2	CN1-25、26	/S-RDY
3	CN1-27、28	/COIN
4	CN1-29、30	/V-CMP

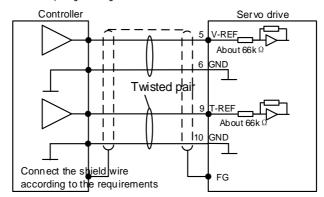
The upper SEG (LED) lights up when the output signal is OFF.

The lower SEG (LED) lights up when the output signal is ON.

The value read through communication is hexadecimal, for example: the read value is 0X8, and the default output configuration means that ALM (CN1-31, 32) output is ON, that is, no alarm output. /S-RDY (CN1-25, 26) output is OFF, that is servo ready. /COIN (CN1-27, 28) output is OFF, that is positioning is completed. / V-CMP (CN1-29 / 30) output is ON, and the speed is not consistent.

3.11 Connection with the Upper Device

3.11.1 Analog Input Circuit 3

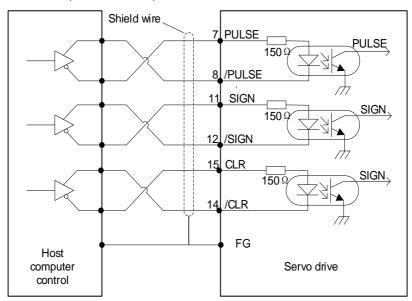

The following describes the 5-6 (speed command input) and 9-10 (torque command input) terminals of the CN1 connector.

Analog signals are speed commands or torque command signals. The input impedance is as follows.

Speed command input: about 66kΩ

Torque command input: about 66kΩ

The maximum allowable input signal voltage is ± 10V

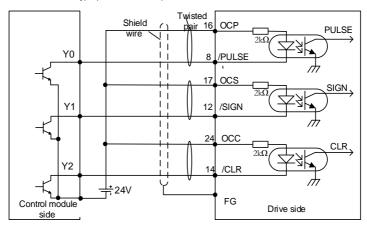


The above wiring is an example of wiring during forward rotation.

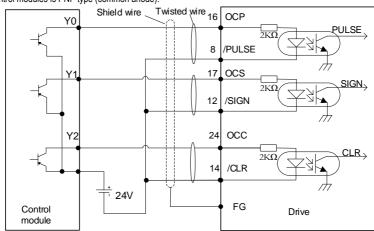
3.11.2 Position Instruction Input Circuit

The following describes the 7-8 (command pulse input), 11-12 (command symbol input), and 14-15 (clear input) terminals of the CN1 connector. The output circuit of the command pulse and position deviation clear signal from the host device may be one of the linear driver output and the open collector output.

Connection example of linear drive output


The differential pulse input signal voltage is ±3.3V and the maximum frequency is 4MHz. This signal transmission

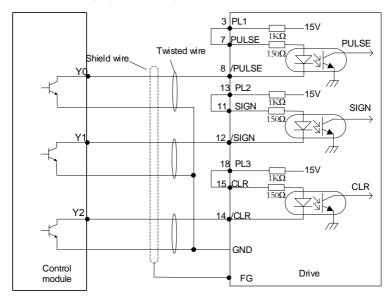
method has the best anti-noise capability. It is recommended to use this connection preferentially.

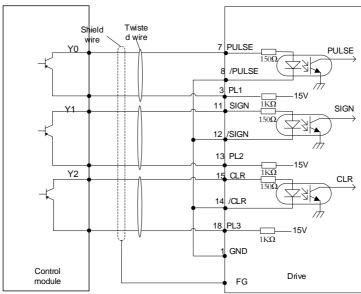

Connection example of open collector output

External 24V power supply:

1.control module is NPN type (common cathode):

2.control modules is PNP type (common anode):

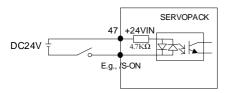


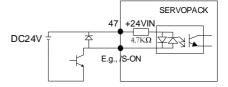

If the linear drive input port is used to receive the external $24\,V$ collector open circuit input signal, please connect a 2K resistor in series to limit the current in the circuit, otherwise, the linear drive input port will be damaged

Internal 15V power supply:

1 control module is NPN type (common cathode):

2 control modules is PNP type (common anode):



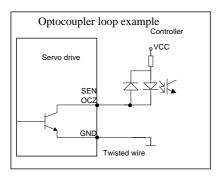

3.11.3 Sequence Control Input Circuit

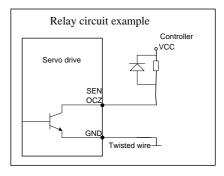
The following describes the 38 to 46 terminals of the CN1 port. Connect via a relay or open collector transistor circuit. When using a relay connection, select the relay for the minute current. If you do not use a minute current relay, it will cause poor contact.

Examples for Relay Circuit

Examples for Open-Collector Circuits

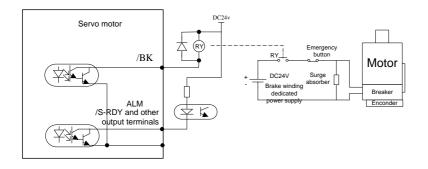
Note: The external power supply (DC24V) must have a capacity of 50 mA or more.

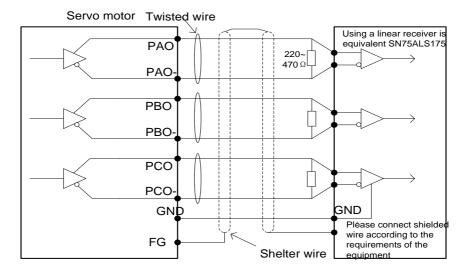

The input loop of the servo unit uses a bidirectional optocoupler. Please select the sink circuit connection or the source circuit connection according to the specifications of the machine.


3.11.4 Sequence Output Loop

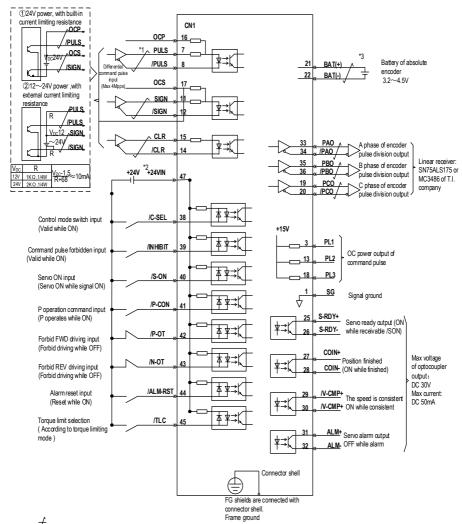
Servo unit signal output circuit is the following three kinds:

1.Open collector output circuit


The output signal (SEN, OCZ) is an open collector transistor output circuit. Please receive through optocoupler circuit, relay circuit or linear receiver circuit.


2.Optocoupler output circuit

The brake linkage (IBK), servo alarm (ALM), servo ready (IS-RDY) and other sequence output signals belong to the optocoupler output circuit. Connect via relay or line receiver circuit.



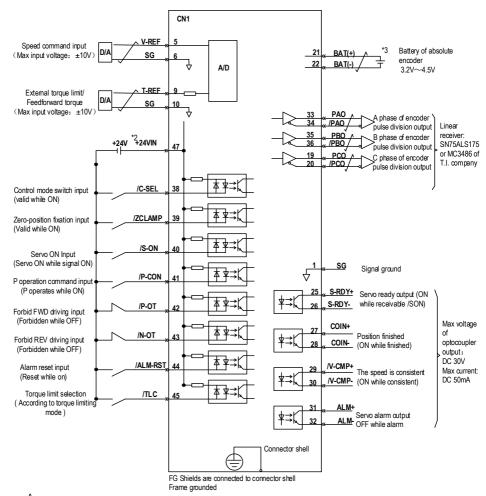
3.Linear drive output circuit

The following describes the 33-34 (phase A signal), 35-36 (phase B signal), and 19-20 (phase C signal) terminals of the CN1 port. The output signal (PAO, /PAO, PBO, /PBO) and the origin pulse signal (PCO, /PCO) of the encoder's serial data are converted into two-phase (A-phase, B-phase) pulses and output through the line driver output circuit. On the upper device side, please use a linear receiver circuit.

3.12 Position Control Wiring Diagram

 [★] is twisted shields;

Note: while using 24V braker, DC24V power should be separated from the power for input and output signal (CN1). Please prepare other power individually, otherwise, there may be misoperation of input and output signal while power on.


If the input voltage of the linear drive input port is greater than 12V, please connect the appropriate current limiting resistor in series in the circuit, otherwise, the linear drive input port may be damaged.

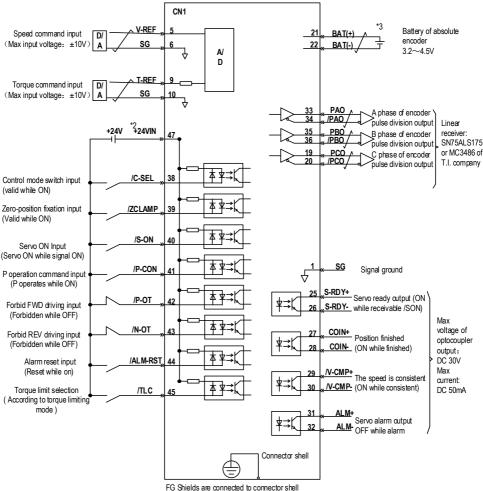
^{*2.} DC24V power should be prepared by user. And double insulation or reinforced insulation equipment should be used for DC24V power.

^{*3.} Connected while using absolute encoder. But never connect backup battery while using encoder cables with battery unit

^{*4.} Output signal should be received by linear receiver.

3.13 Speed Control Wiring Diagram

^{*1.} \neq is the twisted shields


^{*2.} DC24V power should be prepared by user. And double insulation or reinforced insulation equipment should be used for DC24V power.

^{*3.} Connected while using absolute encoder. But never connect backup battery while using encoder cables with battery unit.

^{*4.} Output signal should be received by linear receiver.

Note: while using 24V braker, DC24V power should be separated from the power for input and output signal (CN1). Please prepare other power individually, otherwise, there may be misoperation of input and output signal while power on.

3.14 **Torque Control Wiring Diagram**

is the twisted shields

Note: While using 24V braker, DC24V power should be separated from the power for input and output signal (CN1). Please prepare other power individually, otherwise, there may be misoperation of input and output signal while power on.

^{*2.} DČ24V power should be grepared by user. And double insulation or reinforced insulation equipments should be used for DC24V power.

Frame grounded *3. Connected while using absolute encoder. But never connect backup battery while using encoder cables with battery unit.

^{*4.} Output signal should be received by linear receiver.

3.15 Regenerative Resistor Connection

When the regenerative energy processing capacity is insufficient, connect an external regenerative resistor as required to set the regenerative resistor capacity (Pn012) and the regenerative resistor value(Pn013).

3.15.1 Connection of Regenerative Resistors

The driver models 1R1A,1R7A,3R3A,500D,600D,700D,800D,121D have no built-in regenerative resistor. When a regenerative resistor is externally connected, the resistor is connected to the B1/+ and B2 terminals. Refer to "A single-phase wiring diagram". Or it is connected to the + and PB terminals. Refer to "E/F single-phase wiring diagram".

In addition to 1R1A, 1R7A,3R3A,500D,600D,700D,800D,121D, the driver model has a built-in regenerative resistor. When the internal regenerative resistor does not meet the requirements, a regenerative resistor can be connected to remove the short wiring between the B2-B3 terminals and connect the external regenerative resistor to the driver. For B1/+, B2 terminals, refer to "B/C/D volume three-phase wiring diagram".

3.15.2 Selection of Regenerative Resistor

Mode	Break resister	internal resister	Minimal of external resister	Maximal of external resister resister
SD700-1R1A		1	40	400
SD700-1R7A		1	40	200
SD700-3R3A		1	40	100
SD700-5R5A	380	40Ω 60W	25	70
SD700-7R6A	300	40Ω 60W	15	50
SD700-9R5A		40Ω 60W	15	40
SD700-120A		30Ω 200W	10	30
SD700-160A		30Ω 200W	10	30
SD700-2R5D		80Ω 60W	80	225
SD700-3R8D		80Ω 60W	55	180
SD700-6R0D		40Ω 60W	35	110
SD700-8R4D		40Ω 60W	25	85
SD700-110D		40Ω 60W	25	70
SD700-170D		30Ω 100W	30	50
SD700-240D	700	30Ω 200W	15	40
SD700-300D		30Ω 200W	15	30
SD700-500D		1	10	20
SD700-600D		1	10	20
SD700-700D		1	10	15
SD700-800D		1	10	15
SD700-121D		1	8	12

Note: When external braking resistor is needed, please select the resistance value of the braking resistor

according to the above table. Select the braking resistor's power according to the braking frequency of the field conditions and the cooling conditions of the braking resistor, you could consult factory if you have any problem.

3.16 Noise and High Harmonic Countermeasures

The following describes noise and harmonic measures:

This servo unit has a built-in microprocessor. Therefore, it may be subject to noise from its peripheral equipment.

To prevent mutual noise interference between the servo unit and its peripheral devices, the following measures to prevent noise interference can be taken as required.

- Set the input command device and noise filter as close to the servo unit as possible.
- Be sure to connect a surge suppressor to the coils of relays, solenoids, and electromagnetic contactors.
- Do not use the same bushing for the main circuit cable and the input/output signal cable/encoder cable, and do
 not bind them together. When wired, the main circuit cable and the input/output signal cable/encoder cable should
 be separated by more than 30cm.
- Do not use the same power supply as the electric welder or EDM machine. Even if it is not the same power supply, connect a noise filter to the input side of the main circuit power cable and the control power cable when there is a high-frequency generator nearby.

4 Trial operation

4.1 Inspections and Notes before Trail Operation

In order to ensure the safe and correct trail operation, please check the programs as below before that:

4.1.1 Conditions of the Servo Motor:

You need to check and confirm all programs as below, if there is any problem, please handle it properly before that trail operation

- Are the Settings, wires and connections correct?
- Is there any looseness in each fastening part?
- When you use servo motors with oil seals, is the oil seal damaged? Is it smeared with organic oil?
- Is the brake released beforehand when it is a servo motor with a holding brake?

4.1.2 Conditions of the Servo Drive

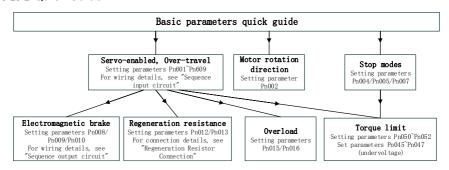
You need to check and confirm all programs as below, if there is any problem, please handle it properly before that trail operation.

- Are the Settings, wires and connections correct?
- Is the supply voltage of the servo unit normal?
- Is the driver status display interface free of warnings, alarms, etc.?

4.1.3 Installation

- Install the servo motor and servo unit according to the installation conditions.
- The servo motor may fall when it rotates, so be sure to fix it on the machine.
- Be sure to leave the servo motor at no load.

4.2 JOG trail operation


The trial run refers to the JOG operation of the servo motor unit. The purpose of the single trial operation of the servo motor is to confirm whether the servo unit and the servo motor are correctly connected and whether the servo motor is operating normally. Confirm the following points before running:

- 1. The motor is in the enabled state and the jog operation is invalid during the operation.
- 2.We suggest that the load inertia is not greater than 30 times of the motor inertia, or it could possibly cause strong mechanical vibration.
 - 3. The Pn500, Pn310, Pn311 parameters set JOG speed, acceleration and deceleration time.

5 Operation

5. 1 Basic Functions

5. 1. 1 Quick Guide

5. 1. 2 Servo Enable and Over-Travel Setting

Enable

Set the servo ON (/S-ON) signal that controls servo motor electrification / non- electrification. Pin numbers can be configured by parameters Pn601 ~ Pn609, and are always configured effectively by parameters Pn610~Pn612. Refer to "Input Signal Configuration". The servo internal enable could also be turned on by setting parameter pn001 (internal enable switch) to 1.

Over-travel

The over-travel prevention function of the servo unit refers to the safety function of forcibly stopping the servo motor by inputting a signal of the limit switch when the mechanical movement part exceeds the safe movement range. For rotary applications such as circular tables and conveyors, the over-travel function may not be required. In this case, the input signal wiring for over-travel is also not required.

- 1. In the one-way over-travel state, commands in the opposite direction of over-travel can be received.
- In position control, when the servo motor stops due to over-travel, the position deviation remains unchanged. To clear the position deviation, a clear signal (CLR) must be input.

Signal Setting

Pin numbers can be configured by parameters Pn601~Pn609, and are always configured effectively by parameters Pn610~Pn612. Refer to "Input Signal Configuration".

Stop Mode

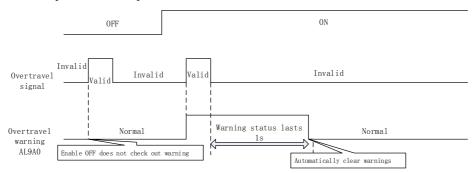
When an over-travel occurs, the servo motor can be stopped by any of the following three methods.

- Dynamic brake (DB) stop: By short the electrical circuit, the servo motor can be quickly stopped.
- Deceleration stop: Decelerate to stop with the emergency stop torque (Pn053).
- Free stop: Naturally stopped due to friction when the motor rotates.

The servo motor status after stopping is divided into the following two types.

- Free running state: A state that naturally stops due to friction when the motor rotates.
- Zero-position fixed state: The state of maintaining zero position in the position loop.

When the over-travel occurs, select the stopping method of the servo motor through Pn007. Refer to description of parameter Pn007.



It cannot decelerate to stop under torque control. Pn007 is set to DB or free stop. After the servo motor stops, it enters into free running state.

3. Warning Checkout

The over-travel warning function is a function that detects the over-travel warning (AL.9A0) after entering into over-travel state when the servo is ON. With this function, the servo unit can transmit the information of detecting over-travel to the upper device even if the over-travel signal is input instantaneously. When using this function, please set Pn006=1 " Detect over-travel warning".

The timing of over-travel warning checkout

- A. The warning is detected when an over-travel occurs in the same direction with command.
- B. When an over-travel in the opposite direction to the command is issued, no warning is detected. For example, under the forward command, no warning will be issued even if the N-OT signal (reverse drive prohibited) is turned ON while moving.
 - C. When there is no instruction, an over-travel warning in the forward or reverse direction will be detected.
 - D. When the servo is turned off, no warning will be detected even if it enters the over-travel state.
- E. In the over-travel state, no warning is detected when the servo is switched from the servo OFF state to the servo ON state
- F. The warning I/O will remain output for 1 second after the over-travel status is released and will be automatically cleared afterwards.

5. 1. 3 Motor Rotation Direction

The actual rotation direction of the servo motor can be switched by Pn002 without changing the polarity of the speed command/position command. At this time, although the rotation direction of the motor is changed, the polarity of the output signal from the servo unit, such as the encoder frequency-divided pulse output, does not change.

Pn002=0 in the factory setting (forward rotation direction) indicates that the counterclockwise rotation (CCW) is positive when looking at the servo motor cover.

Function code	Parameter name	Range	Default	Unit	Communication address	Enabled method	
Pn002	Motor rotation direction selection	0~1	0	-	0x0002	Restart effect	
	Faces to the motor end cover: 0- Counter clockwise direction is positive 1- Clockwise direction is positive						

5. 1. 4 Stop Mode

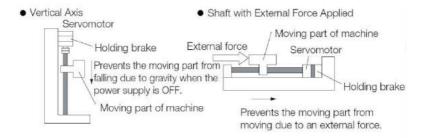
1. Stop mode when Servo OFF or in type 1 alarms

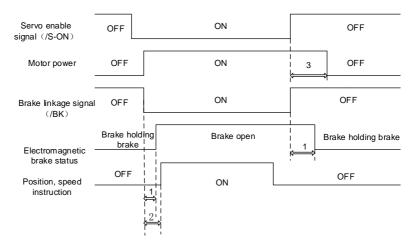
It can be selected by Pn004 when servo OFF or in type 1 alarm.

- Dynamic brake (DB) stops and maintains DB status: By shorting the electrical circuit, the servo motor can be stopped in an emergency, and the DB status is maintained after stop.
- Dynamic brake (DB) stops and DB status is released: By shorting the electrical circuit, the servo motor can be stopped in an emergency and the DB status is released after stop.
 - Free running stop: Free stop due to the friction while motor rotates.

When the servo motor stops or rotates at a very low speed, when the dynamic brake is selected to stop, it will be the same as the free stop, and no braking force will be generated.

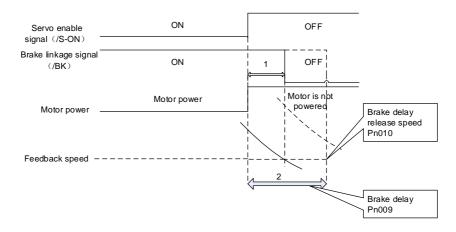
2. Stop mode when in type 2 alarms


Type 2 alarms can select zero speed stop in addition to the servo motor OFF method and type 1 alarm stop method. Refer to the description of parameter Pn053 for the torque limit at zero speed stop.


The setting of zero speed stop mode is valid only for position control and speed control.

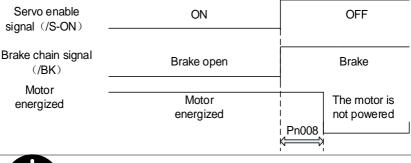
5. 1. 5 Electromagnetic Brake

The brake is a part that holds the position when the servo unit power is off so that the moving part of the machine does not move due to its own weight or external force. It is built into the servo motor with a brake. Please use it as shown below.


The brake has a delay time for operation. Please ensure the brake operation time while ON and OFF.

- 1. Different types of brakes may have slightly different time for holding brakes and loosening brakes.
- Please ensure that the input command is after the brake opening operation time to ensure the accuracy of the command
- When the motor is locked, the motor lock time (Pn008) can be set to ensure that the motor does not operate during braking, to prevent the danger of motor action when the servo is off.

Motor running / BK signal OFF timing sequence


When an alarm occurs during servo motor rotation, the servo motor stops and the brake signal (/BK) turns OFF. At this time, the brake signal (/BK) output time can be adjusted by setting the brake command output speed value (Pn010) and the servo OFF-brake command waiting time (Pn009).

- 1. When the motor enters the non-energized state, when the motor speed is lower than the set value of Pn010, the /BK signal output time is subject to 1
- 2.When the motor enters the non-energized state, the set time of Pn009 is passed first, and the output time of /BK signal is subject to 2

Motor stopping locked / BK signal OFF timing sequence

When the servo motor is stopped, the brake (/BK) signal and the servo ON (/S-ON) signal are turned off at the same time. By setting Pn008, it is possible to change the time from when the servo ON (/S-ON) signal is OFF to when the motor actually enters the non-energized state.

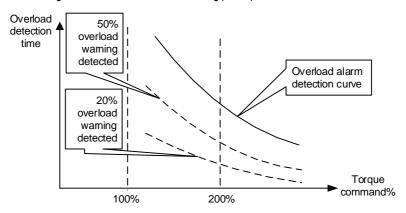
The alarm occurs when the servo is locked, which has nothing to do with the setting, and the motor immediately enters the state of non-energized. At this time, the machine may move before holding brake due to the delay of brake action

5. 1. 6 Regenerative Resistor

Refer to "Regeneration Resistor Connection" for the wiring method. When connecting an external regenerative resistor, set parameters Pn012 and Pn013 according to the external resistance.

The regenerative resistor capacity should be set to a value that matches the allowable capacity of the connected external regenerative resistor. The setting differs depending on the cooling condition of the external regenerative resistor.

Self-cooling method (natural convection cooling): Set to 20% or less of the regenerative resistor capacity (W).


• Forced air cooling: Set to 50% or less of the regenerative resistor capacity (W).

Example: When the capacity of the self-cooling external regenerative resistor is 100W, the setting value is 100W × 20% = 20W. Therefore, set Pn012 = 2 (setting unit: 10W).

5. 1. 7 Overload

This servo unit can change the detection time of the overload warning (AL.910) and overload (continuous maximum) alarm (Er. 720). However, it is not possible to change the detection value of the overload characteristic and overload (instantaneous maximum) alarm (Er. 710).

1. Change the detection time of overload warning (AL.910)

The factory overload warning detection time is 20% of the overload alarm detection time. The overload warning detection time can be changed by changing the overload warning value (Pn015). In addition, we can use it as an overload protection function corresponding to the system, which can improve the security of the system.

For example, as shown below, after changing the overload warning value (Pn015) from 20% to 50%, the overload warning

2. Change the detection time of the overload warning (Er. 720)

detection time is half (50%) of the overload alarm detection time.

The overload (continuous maximum) alarm (Er. 720) can be detected in advance to prevent motor overload.

Detecting the overload alarm by using the "Base current after derated", the overload alarm detection time can be shortened. The detection value of the overload (instantaneous maximum) alarm (Er. 710) cannot be changed.

Motor base current after derated = motor current threshold when starting calculating overload alarm (default 1.15 times motor) * derated value of motor overload detection base current (Pn016).

For example, as shown in the following figure, after setting Pn016 to 50%, the overload alarm can be detected earlier because the motor overload is calculated from 50% of the base current. When the value of Pn016 is changed, the overload warning detection time is changed, because the overload alarm detection time will be changed.

5. 1. 8 Multi-turn Absolute Encoder

When using a multi-turn absolute encoder, an absolute value detection system can be constructed by a host device. With the absolute value detection system, it is not necessary to perform an origin return operation every time the power is turned on. In order to save the position data of the absolute encoder, a battery unit needs to be installed. Install the battery on the battery unit of the encoder cable with battery unit is not used, please install the battery in the upper device. The battery voltage is 3.2V - 4.5V. If the battery voltage is lower than 3.2V, the battery under voltage alarm (Er.830) will appear. Generally, 3.6v/3.7v lithium battery is selected.

Related setting parameters:

Function	Name	Range	Default	Unit	Communication	Effective		
code		90	20.00.0	O	address	mode		
	Method to use absolute encoder	0~1	0	_	0x0040	Restart effect		
Pn040	0 - Use an absolute encoder as an absolute encoder: If the motor is an absolute multi-turn encoder, set this parameter to 0, so to use the multi-turn absolute function. This function must be used with battery encoder line, otherwise the servo will alarm (ER. 810) 1- Use an absolute encoder as an incremental encoder: When used as an incremental encoder, the							
	power-off position won't be recorded and warning or alarm corresponding to multiple revolutions won't happen either when the battery is under-voltage or the motor encoder cable is unplugged							
Pn041	Absolute encoder battery under voltage alarm/warning selection	0~1	0	_	0x0041	Restart effect		
	0- Set the low battery voltage as a fault: The driver powers up/resets for 4~9 seconds to monitor the battery status. Under-voltage will be reported as an under voltage alarm (Er. 830). Over time will not be detected. The drive fails to operate normally under fault condition 1- Set the low battery voltage as a warning: Under-voltage (below 3.2V) will be reported as an under							
	voltage warning (Al.930). It will always monitor the battery voltage and can be self-recovery meanwhile enable running is out of restriction.							
	Absolute encoder operation	0~2	0	_	0x0792	Restart effect		
Pn792	O - No action 1- Write motor parameters to encoder EEPROM. After modifying the motor parameters, this operation is required to write the data to the encoder 2- Clear multi-turn encoder turns: if you use it initially or replace or insert/remove the battery during power-down of the drive, after power on again, an encoder backup alarm (Er. 810) will be reported. This parameter is set to 2 when disable the servo (if it is set to 2, the parameter will automatically return to 0, which is normal.) and it can only be cleared after re-powered. The alarm clearing will clear the encoder multi turn value and retain the single cycle value as well. 3- Clear encoder alarm only (Er.860 / Er.810): after the encoder alarms, setting this parameter to 3							

can only clear the encoder alarm, but not clear the encoder multi turn value

Related monitoring data:

Monitoring code	Monitoring name	Range	Unit	Communication address		
Un010	Absolute encoder single-turn value	Encoder linit		0xE010		
0.1010	Display single-turn absolute position value of the absolute encoder					
Un011	Absolute encoder multi-turn value	0x80000000~0x7FF FFFFF	-	0xE011		
Unuii	Display the number of turns of the multi-turn encoder when the multi turn encoder is selected. After the multi turn encoder is reset, the value is 0.					

1. When replacing the battery, please make sure that the driver is powered on and the encoder cable is connected normally. Otherwise, the encoder will display the backup warning when reconnecting the encoder. The absolute position will be lost at this time and it needs to clear the number of turns of the multi-turn encoder.

5. 1. 9 Torque Limit

1. Torque limit method

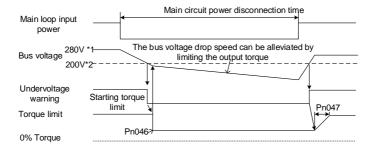
To protect the machine etc., the output torque can be limited and set by parameter Pn050. The torque limit can be in the following five ways:

Pn050	Torque limit method description	Related parameters
0	Analog torque (torque mode is invalid)	Pn405
1	Maximum torque limit 1	Pn051
2	FWD max torque limit 1 (Pn051), REV max torque limit 2	Pn051 \ Pn052
3	Max torque limit 1 when the on-off torque limit switching (/TLC) signal is OFF; Max torque limit 2 when ON.	Pn051 \ Pn052
4	Limit by internal torque command (under torque mode)	Pn410

- 1. The input voltage of the analog command for torque limit has no polarity. Take the absolute value of the voltage and use the torque limit value corresponding to this absolute value for both the forward direction and reverse direction.
- 2. The set value exceeds the maximum torque of the servo motor used, and the actual torque is also limited to the maximum torque of the servo motor.
- When the set value is too small, the torque may be insufficient when the servo motor accelerates or decelerates. Please set according to the actual situation.

2. Torque limit output signal

The torque limit (/CLT) output is ON means the motor output torque is in the limit state. This signal can be used to confirm the status of the current torque limit of the motor. Refer to "Sequence Output Circuit" for the wiring method. Refer to "Switching Output Signal" for parameter setting.

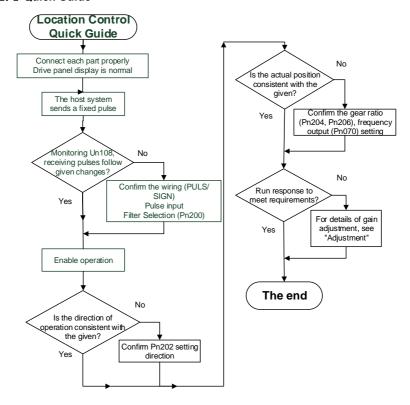

Torque limit under voltage

When the instantaneous power failure and the main circuit power supply voltage are insufficient for a short period of time, the main circuit DC voltage inside the servo unit is below the specified value, an under-voltage warning is detected, and the function for limiting the output torque can be selected. Related parameters are as below:

Function code	Parameters name	Range	Default	Unit	Communication address	Effective mode	
	Under-voltage function selection	0x00~0x0 2	0	_	0x0045	Restart effect	
Pn045	O- No detection of main circuit descent warning 1- Detection of main circuit descent warning 2- Detect main circuit descent warning and perform torque limit. The relevant torque limit is matched with Pn046/Pn047. For details, refer to "Main circuit under-voltage torque limit".						
Pn046	Torque limit when main circuit voltage drops	0~100	50	%	0x0046	Immediately	
	According to the under voltage warning, it will impose the torque limit inside the servo unit.						
Pn047	Torque limit release time when main circuit voltage drops	0~1000	100	ms	0x0047	Immediately	
	After the under-voltage warning signal releases, the torque limit value is controlled inside the servo unit according to the set time. For details, refer to "Under-voltage limit of the main circuit".						

By combining this function with the setting function of the instantaneous stop holding time, when the power supply voltage is insufficient, it could avoid the shutdown due to the alarm and continue the operation without performing the power restoration operation.

Under-voltage warning, apply torque limit inside the servo unit. After receiving the under voltage warning release signal, the torque limit value is controlled inside the servo unit according to the set release time. The logical timing is as follows:



- 1: 560V when 400VAC
- 2: 400V when 400VAC

5. 2 Position Mode

For details on the wiring related to the position mode; see "Connection Control Example under Position Control". The position control is selected by the control mode selection (Pn000 = 0, factory default).

5, 2, 1 Quick Guide

5. 2. 2 Basic Settings

The following describes the basic settings for position control:

Command pulse filter selection

The appropriate command pulse filter can be selected according to the frequency of the highest pulse in operation, which can be set by parameter Pn200. For details, refer to the relevant description of the function code. If the selection is not appropriate, the received pulse of the servo unit may be lost or increased.

2. Pulse input form

Select the corresponding pulse input form according to the pulse output form of the host system.

Function code	Setting value	Command form	Forward instruction	Reverse instruction
Pn201	0	Pulse + direction positive logic	PULS (CN1-7) SIGN (CN1-11) High level	PULS (CN1-7)
	1	CW+CCW positive logic	CW (CN1-7) Low level CCW (CN1-11)	CW (CN1-7) Low level
	4	Quadrature encoding 4 times	Phase B	Phase A (CN1-7) Phase B (CN1-11)
	5	Pulse + direction negative logic	PULS (CN1-7) SIGN (CN1-11) Low level	PULS (CN1-7) SIGN (CN1-11) High level
	6	CW+CCW negative logic	CW (CN1-7) High level CCW (CN1-11)	CW (ON1-7) COW (ON1-11) High level

3. Electronic gear ratio

When the reduction ratio of the motor shaft and the load side is n/m (When the motor rotates m turns, the load shaft rotates n turns), the set value of the electronic gear ratio can be obtained by the following formula (Take 23 bit absolute encoder as an example):

Electronic gear ratio
$$\frac{B}{A} = \frac{Pn204}{Pn206} = \frac{\text{Encoder resolution}}{\text{Load shaft movement amount in 1 rotation (command unit)}} \times \frac{m}{n}$$

Steps	os Content	Composition of mechanical system			
Осерз	Ball sc		Rotary table	Belt + Pulley	

		Reference unit: 0.001 mm Load shaft Decoder: Ball screw lead: 24 bits 6 mm	Reference unit: 0.01° Gear ratio: 1/100 Load shaft Encoder: 24 bits	Reference unit: 0.005 mm Load shaft Gear ratio: Pulley dia.: 1/50 Encoder: 24 bits
1	Machine specification	Ball screw lead: 6mm Reduction ratio: 1/1	Rotation angle per turn: 360° Reduction ratio: 1/100	Pulley dia: 100mm (Pulley circumference: 314mm) Reduction ratio: 1/50
	Encoder	8388608 (23-bit)	8388608 (23-bit)	8388608 (23-bit)
2	resolution	16777216 (24-bit)	16777216 (24-bit)	16777216 (24-bit)
		131072(17-bit)	131072(17-bit)	131072(17-bit)
3	Command unit	0.001mm (1mm)	0.01°	0.005mm (5mm)
4	Load shaft movement amount in 1 rotation (command unit)	6mm/0.001mm = 6000	360°/0.01°= 36000	314mm/0.005mm = 62800
5	Electronic gear ratio	$\frac{B}{A} = \frac{8388608}{6000} \times \frac{1}{1}$	$\frac{B}{A} = \frac{8388608}{36000} \times \frac{100}{1}$	$\frac{B}{A} = \frac{8388608}{62800} \times \frac{50}{1}$
6	Desembles	Pn204: 8388608	Pn204: 838860800	Pn204:419430400
6	Parameter	Pn206: 6000	Pn206: 36000	Pn206: 62800

- 1. When the numerator of electronic gear ratio (pn204) is set to 0, the value set by the denominator of electronic gear ratio (pn206) is the number of command pulses corresponding to one cycle of motor operation. For example, if pn204 (numerator) is set to 0 and pn206 (denominator) is set to 10000, it means that the upper computer (PLC, motion controller, etc.) sends 10000 pulses, and the servo motor rotates one cycle..
- 2. If 0.001 ≤ electronic gear ratio (B / a) ≤ 83887 exceeds the setting range, an "abnormal parameter setting (er.040) alarm" will occur (for 23 bit encoder).

5. 2. 3 Deviation Clearance

The deviation clear signal (/CLR) is the input signal to clear the servo unit deviation counter.

1. Clear signal wiring

Deviation clear signal wiring can be divided into linear driver output and open collector output. Please refer to "Position Command Input Circuit" for wiring details.

2. Setting the deviation clear mode

The state of the clear signal is set by Pn272.

Function code	Parameter name	Range	Defaults	Unit	Communicatio n address	Effective mode	
	Position deviation clear mode 0x00~0x03 0 — 0x0272						
Pn272	Set the clear mode of the sw 0-clear when level ON 1-rising edge OFF->ON clear 2-clear when level OFF 3-falling edge clears when O	ar	on deviation cl	ear signal (/CLR):		

When Pn272 = 0 or 2, in order to perform clear signal processing, the amplitude of the clear signal must be 250µs or more.

When Pn272 = 1 or 3, in order to perform clear signal processing, the amplitude of the clear signal must be $20\mu s$ or more.

When set to keep clear, the servo lock function is invalid. Therefore, the servo motor will rotate at a slight speed due to the drift pulse in the speed loop.

3. Deviation clearing method selection

Depending on the status of the servo unit, you can choose when to clear the position deviation. Set the deviation clearing method by Pn273:

Function code	Parameter name	Range	Defaults	Unit	Mailing address	Effective mode	
	Position deviation clear mode selection 0x00~0x02 0 — 0x0273 R eff						
Pn273	Set themode of the deviation 0- servo OFF, alarm, / CLF 1- / CLR signal position deviated alarm, / CLR signal position deviated alarm, / CLR signal position deviation clearing 5- cleared in case of servo 5- cleared in case of servo	R signal position deviation can be clear tion deviation can b OFF, alarm and lim	ed e cleared nit	e cleared			

Refer to the "Deviation Clearance" for details on the pulse amplitude of the clear signal.

In position control, the positional deviation remains unchanged when the servo motor is stopped due to the travel limit.

Under position mode, the servo motor stops running due to the travel limit. If the host computer continues to send pulses, the position deviation will increase continuously and the position deviation will not be cleared automatically. When excluding the travel limit, the motor may gallop. Please pay attention to the safety of the motor action, or use the position deviation command to clear the position deviation.

5. 2. 4 Command Pulse Inhibition

The command pulse inhibition (/INHIBIT) function is a function that prohibits the command pulse input from being counted during position control. When this function is enabled, the servo unit enters a state where it cannot receive the command pulse input.

1. Configuration of Command Pulse Inhibition

The signal is not configured in the factory default switch configuration. Therefore, the pin number configuration (0x0D) needs to be performed by parameters Pn601~Pn609.

Command pulse inhibited wiring

The command pulse inhibited signal is a universally configurable switching value input. Refer to Sequence Input Circuit for wiring details.

5. 2. 5 Positioning Approach

When positioning is near to (/NEAR) position control, the host device may receive the positioning approach signal before confirming the positioning completion signal, so as to prepare for the sequence of actions after the positioning is completed. In this way, the time required to complete the positioning can be shortened. This signal is usually used in pair with the positioning completion signal. Refer to the "Positioning completion" instruction for the positioning completion signal.

1. Confiuration of positioning approach

The signal is not configured in the factory default switching value output configuration. Therefore, the pin number configuration (0x08) needs to be performed by parameters Pn613~Pn615.

When the difference between the command pulse number of the host device and the movement amount of the servo motor (position deviation) is lower than the setting value of Pn260 (position approach signal width), the signal is output when the positioning approach output condition is satisfied.

Position approach wiring

The positioning approach signal is a general configurable switching value output. Refer to "Sequence Output Circuit" for wiring details

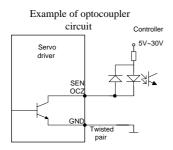
5. 2. 6 Positioning Completion

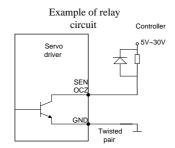
In position control, it indicates the servo motor positioning completed (/COIN) signal.

1. Positioning completion configuration

In the factory default digital output configuration, the signal is configured as CN1's 27th and 28th pin numbers (Pn614=0x01) by default. Please confirm before use.

Function code	Parameter name	Range	Defaults	Unit	Communication address	When enabled		
	Positioning completion range	0~1073741824	7	Command unit	0x0262 0x0263	Immediately		
Pn262								


If the set value is too large, the constant positioning completion signal may be output when the deviation is small during low-speed operation. When outputting a constant positioning signal, please lower the setting until the signal is no longer output.


Function code	Parameter	Range	Defaults	Unit	Communication	When enabled
	name	. 18.190	20.00	•	address	***************************************

	Positioning completion signal output time	0x00~0x02	0	_	0x0274	Restart effective
Pn274	0- Output when the range (Pn262). 1- Output when the completion range 2- Output When the	e absolute value of (Pn262) and the cor	position devia the position do mmand after the the position d	tion is les eviation is he position leviation i	ss than the positioning s smaller than the posi on command filtering is s smaller than the pos	tioning 5 0.

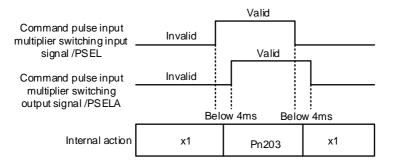
2. Positioning completion wiring

The positioning completion signal is a universally configurable switching value output. For wiring details, refer to "Sequence Output Circuit".

${\bf 5.\ 2.\ 7\ Command\ Pulse\ Input\ Magnification\ Switching}$

The ON/OFF of the command pulse input magnification switch input signal (/PSEL) could switch the input magnification of the position command pulse to 1 and n times (n = 1 to 100). The switching of the magnification can be confirmed by output signal(/PSELA) of command pulse input magnification switching.

Please switch the command pulse magnification while the position command pulse is 0. If the position command pulse is not 0, the servo motor may cause a position deviation or cause a position loss.


1. Configuration of command pulse input magnification switching

The signal is not configured in the factory default switching value input configuration. Therefore, the pin number configuration (0x10) needs to be performed by parameters Pn601~Pn609.

Function code	Parameter name	Range	defaults	unit	Communication address	When enabled
Pn203	Command pulse input magnification	1~100	1	x1 times	0x0203	Immediately

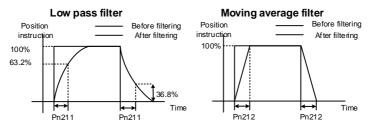
Set the command pulse input magnification value to be used in conjunction with ON/OFF of the command pulse magnification switching signal for switching the position command pulse input magnification to 1 or the multiple of this parameter setting.

Note: If the input pulse frequency is too low or the value is set too large, the speed may not be steady.

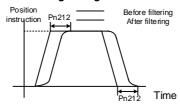
2. Command pulse input magnification switching wiring

The command pulse input magnification signal is a universally configurable switching value input. Refer to "Sequence Input Circuit" for wiring details.

5. 2. 8 Smooth Settings


The command pulse input is filtered to make the rotation of the servo motor smoother. This function is more effective in the following situations:

- The host device that issued the command does not perform acceleration / deceleration
- When the instruction pulse frequency is extremely low
- When the position command smoothing function is set, the system response may be affected. Please use it reasonably.


The filter-related parameter settings are as follows:

Function code	Parameter name	Range	default	unit	Communication address	When enabled		
	Position command low-pass filter time constant		0	ms	0x0211	After stop		
Pn211	This parameter is used to set the time constant of the first-order low-pass filter corresponding to the position command and it can reduce the mechanical shock in the case of abrupt changes in the input pulse command frequency by setting this parameter. If set too large, the servo response will slow down.							
Pn212	Moving average filtering time of position command	0~1000	0	ms	0x0212	After stop		
FIIZ IZ	This parameter is used to set the time constant of the moving average filter of the corresponding position instruction. It can reduce the mechanical shock in the case of abrupt changes in the input pulse command frequency by setting this parameter. If set too large, the servo response will slow down.							

The difference between the position command low-pass filter time constant and the position command's moving average filter time is shown below:

Moving average filter

5. 2. 9 Frequency-division Output

The encoder frequency-division pulse output is a signal that is output to the outside in the form of a two-phase pulse (phase A, phase B) with a phase difference of 90° after processing the signal from the encoder inside the servo unit. Used as position feedback in the host device.

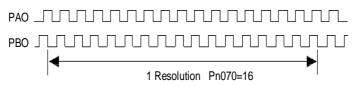
Frequency-division pulse output parameter configuration

Set the encoder frequency division pulse output as follows:

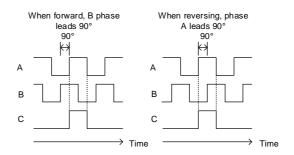
Function code	Parameter name	Range	defaults	unit	Communication address	When enabled	
	Encoder frequency division pulses	16~4194304	2048	-	0x0070	restart effective	
Pn070	The number of pulses per cycle from the encoder is divided by frequency in accordance with the parameter. Please set it according to the system specifications of the machine and host device.						
	Divided frequency output reversed 0~1 0 - 0x0072 restart effective						
Pn072	A/B pulse phase sequence logic when setting forward/reverse: 0- Don't revert the pulse output: When forward, A leads B 1- Revert the pulse output: When forward, B leads A						

1. Frequency division pulse

The number of pulses per revolution from the encoder is processed inside the servo unit and then divided down and output to the set value of Pn070.


The encoder's number of divided pulse outputs is set according to the system specifications of the machine and the host device.

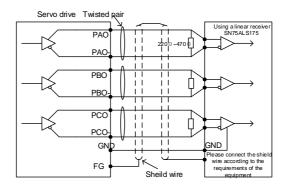
The setting of frequency division pulse number of encoder will be limited by the resolution of encoder. The maximum


output frequency of frequency division pulse of encoder shall not exceed 4MHz (after 4 times frequency), as shown in the table below:

Pulse Number of Encoder Frequency	Setting	Encoder Resolution			Linnan Limit of marker Connect (almin)
Devision (pulse/r)	increment	17 bits 20 bits 23 bits		23 bits	Upper Limit of motor Speed (r/min)
16~16384	1	0	0	0	6000
16386~32768	2	0	0	0	3000
32772~65536	4	0	0	0	1500
65544~131072	8	0	0	0	750
131088~262144	16	-	0	0	375
262176~524288	32	-	0	0	187
524352~1048576	64	-	0	0	93
1048704~2097152	128	-	-	0	46
2097408~4194304	256	-	-	0	23

Output example: When Pn070=16 (16 pulses per revolution), an output example of the encoder frequency-division pulse output A-phase (PAO) signal and the encoder frequency-division pulse output B-phase (PBO) signal is shown below.

2. Frequency division output reversed

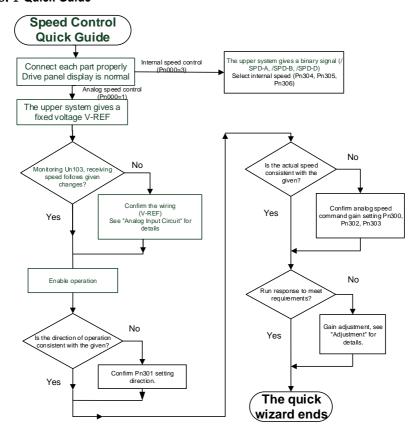


Parameter Pn072 can be set to revert the logic of the AB phase signal of the divided output pulse.

The amplitude of the Z-phase pulse varies with the number of encoder frequency-division pulses (Pn070) and is consistent with the amplitude of the A-phase. The smaller the frequency division pulse number (Pn070) is, the wider the Z-phase pulse amplitude is.

Frequency division pulse output wiring

Refer to the "Linear Drive Output Circuit" for details on the wiring of the frequency division pulse output.


The output voltage of frequency division pulse of encoder is differential \pm 5V. Because the pulse width of C (Z) phase pulse is very small, it is difficult to measure the change with a multimeter. It is necessary to cooperate with the high-speed input point of the host computer to capture the pulse, or set the encoder frequency division pulse number (Pn070) to the minimum (16), and then measure with the multimeter voltage level.

5. 3 Speed Mode

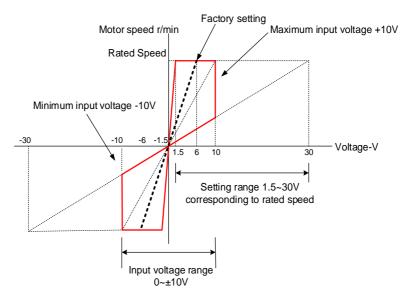
For details on speed mode wiring, refer to "Speed Control Wiring Diagram". It is selected by control mode selection (Pn000).

The speed control mode is divided into internal speed mode (Pn000=3) and analog speed mode (Pn000=1) according to the command source.

5, 3, 1 Quick Guide

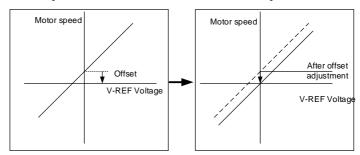
5. 3. 2 Basic Settings

Control mode selection (Pn000=3), internal speed mode, internal speed command direction selection based on switching value input (/SPD-D), internal speed command selection A (/SPD-A), internal speed command selection B (/SPD-B) configuration to select the speed instruction.


The control mode selection (Pn000 = 1) is the analog speed mode. The speed command is given according to the voltage of V-REF (CN1-5, CN1-6) and the set value of analog speed command gain Pn300.

1. Analog speed

Function code	Parameter name	Range	Default	Unit	Communication Address	When enabled		
	Analog speed command gain	150~30 00	600	0.01V/rated speed	0x0300	Immediately		
Pn300	This parameter is used to set the analog voltage value (V-REF) required by speed command so as to make the servo motor speed to rated value. The default is the rated speed corresponded with given voltage 6V. Caution: Do not apply the voltage that exceeds -10~10V, otherwise, it may cause damage to the driver.							
	Analog speed command reverse	0~1	0	-	0x0301	Immediately		
Pn301	Set the voltage polarity of the analog speed command: 0 -Positive polarity: positive voltage corresponds to positive speed command. 1- Negative polarity: positive voltage corresponds to negative speed command.							
	Analog speed instruction filter time	0~655.35	0.40	ms	0x0302	Immediately		
Pn302	analog speed com	nmand (V-RE	F) input and u	sually it does not	n one delay filter is app need to be changed. I parameter while confirm	f the set value is		
D., 202	Analog speed command dead zone range	0~3	0	٧	0x0303	Immediately		
Pn303	speed. This is bed	ause there is	a slight devia	ition in the comm	the servo motor may re ands inside the servo u nmand dead zone.			


Set the analog voltage value of the speed command (V-REF, refer to "Analog Input Circuit" for wiring) that makes the speed of the servo motor rated via the analog speed command gain Pn300.

Example: The factory default parameter Pn300 = 600 (6V corresponds to the rated speed (assuming 3000rpm). If the V-REF input voltage is 1V, the speed command corresponds to 500rpm. If 3V is input, the speed command corresponds to 1500rpm.

Adjustment of instruction offset:

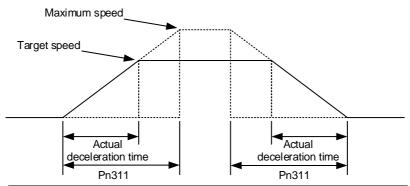
When analog speed control is used, even if the command is 0V, the servo motor may rotate at a slight speed. This is because there is a slight deviation in the instructions inside the servo unit. This slight deviation is called "offset".

There are two methods of automatic adjustment and manual adjustment of offset adjustment. Automatic adjustment is automatic adjusting command offset (Fn100) and manual adjustment is manually adjusting command offset (Fn101). For details, refer to "Auxiliary Functions".

- 1. When adjusting automatically, be sure to adjust the command offset while the servo is OFF and upper device (PLC, button, etc.) gives 0V voltage command.
- 2. When adjusting manually, observe the running status of the motor while adjusting under servo ON.
- 3. The offset adjustment value will not be initialized if performing the factory restore.

2. Internal speed

Function code	Parameter name	Range	Default	Unit	Communication address	When enabled	
	Internal speed 1	0~10000	100	rpm	0x0304	Immediately	
Pn304	Internal speed 2	0~10000	200	rpm	0x0305	Immediately	
Pn305 Pn306	Internal speed 3	0~10000	300	rpm	0x0306	Immediately	
	When operating in the internal speed mode, the servo unit provides 3 internal speed commands and selects A and B through the switching value internal speed command. When the switching value internal speed command selects A and B at OFF state, the internal speed is default as 0.						


The speed is selected through the switching value input signal control:

Switchi	ng value inpu	ıt signal	Direction of arroad common d	Connect instruction sine
/SPD-D	/SPD-A	/SPD-B	Direction of speed command	Speed instruction size
	OFF	OFF		0
OFF	OFF	ON	Positive	Internal speed 1(Pn304)
OFF	ON	ON	Positive	Internal speed 2(Pn305)
	ON	OFF		Internal speed 3(Pn306)
	OFF	OFF		0
ON	OFF	ON	Negativo	Internal speed 1(Pn304)
ON	ON	ON	Negative	Internal speed 2(Pn305)
	ON	OFF		Internal speed 3(Pn306)

5. 3. 3 Soft Start

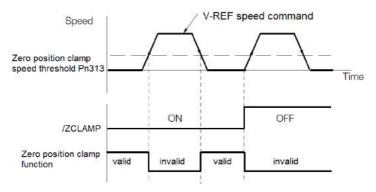
The soft start function is a speed command that converts a step speed command to a smoother constant acceleration/deceleration. You can set the acceleration time and deceleration time, and use this function when you want to achieve smooth speed control during speed control.

Function code	Parameter name	Range	Default	Unit	Communication address	When enabled	
D=240	Speed command trapezoidal acceleration time	0~10000	0	ms	0x0310	Immediately	
Pn310	Acceleration time of the set speed is from 0r/min to the max speed (corresponding to the motor model). When the given speed is more or less than the max speed, the actual acceleration time is calculated in proportion.						
5.044	Speed command trapezoidal deceleration time	0~10000	0	ms	0x0311	Immediately	
Pn311	Deceleration time of the set speed is from max speed (corresponding to the motor model) to 0r/min. When the given speed is more or less than the max speed, the actual deceleration time is calculated in proportion.						

Note that the acceleration and deceleration time refers to the time from 0 to the maximum speed or deceleration from the maximum speed to 0, and the maximum speed is taken as the judgment standard instead of the rated speed or the given speed

5. 3. 4 Zero position Fixed Functions

The zero-position fixed function means that when the zero-position fixed signal (/ZCLAMP) is ON, the servo lock is performed when the input voltage of the speed command (V-REF) is lower than the speed set by the fixed zero-position value (Pn313). Clamp after shutdown, means that the position loop is formed inside the servo unit, and the speed command will be ignored. Therefore, when used for speed control, the host device does not build a position loop.


The servo motor clamp is fixed within ±1 pulse of the zero position fixing effective position. Even if rotation occurs due to external force, it will return to the zero position.

1. Zero-position fixed configuration

The signal is not configured in the factory default switch configuration. Therefore, the pin number configuration (0x0C) needs to be performed by parameters Pn601~Pn609.

Function code	Parameter name	Range	Defaults	Unit	Communication address	When enabled
	Zero speed clamp mode	0~3	3	ı	0x0312	Immediately
Pn312	Speed mode, setting the switching value zero position clamp signal (/ZCLAMP) working mode: 0- Invalid 1- Speed command is set to 0, not clamped after stop 2- Speed command is set to 0, clamped after stop 3- Speed command is lower than "zero position clamp speed threshold", and then speed command is set to 0 at first, clamped after stop.					
Pn313	Zero position Clamp Speed Threshold	0~1000 0	10	rpm	0x0313	Immediately
	Set the zero position	n control sw	vitching thresh	old when	zero position clamp mo	de is set to 3.

The relationship between zero position clamp speed thresholds and zero position clamp function is shown in the figure below:

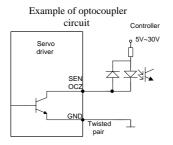
2. Zero-position clamp wiring

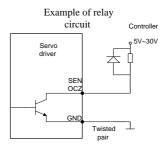
The zero-position clamp signal is a universally configurable switching value input. Refer to "Sequence Input Circuit" for wiring details.

5. 3. 5 Rotation Detection Signal

When the motor speed is more than the setting value, a switching value rotation detection signal (/TGON) is output.

Configuration of rotation detection signal

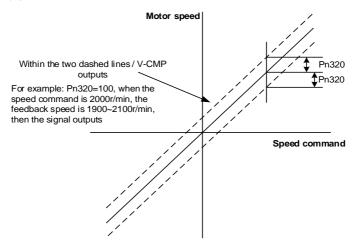

Function code	Parameter Name	Range	Default	Unit	Communication address	When enabled	
Pn317	Rotation determinatio n threshold	1~ 10000	20	rpm	0x0317	Immediatel y	
	When the motor speed is higher than the set value, the switching value rotation detection signal (/TGON) is output.						


This signal is not configured in the factory default switching value output configuration. Please confirm before use. The signal is not configured in the factory default switching value output configuration. Therefore, the pin number configuration (0x03) needs to be performed by parameters Pn613~Pn615.

The output condition is that the signal is output when the current feedback speed (absolute value) of the motor is higher than the setting value of Pn317 (rotation determination threshold).

2. Wiring of rotation detection signals

The rotation detection signal is a universally configurable switching value output signal. Refer to "Sequence Output Circuit" for wiring details.

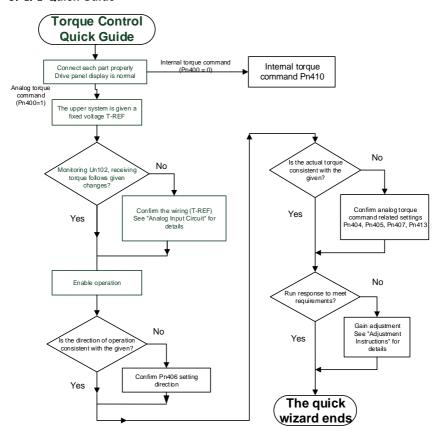

5. 3. 6 Consistent Speed

The speed consistent signal (*N*-CMP) is a signal that is output when the difference between the servo motor speed and the command speed is equal to or lowers than the set value of the speed consistent range Pn320. Used when interlocking with the upper device. This signal is the output signal during speed control.

1. Configuration of Speed-consistent Signals

Function code	Parameter name	Range	Default	Unit	Communication address	When enabled	
Pn320	Speed consistent range	0~100	10	rpm	0x0320	Immediatel y	
F11320	When the difference between the motor speed and the command speed is lower than the set value, the switching value speed consistent signal (/V-CMP) is output.						

In the factory default switching value output configuration, the signal is configured as CN1 29 and 30 pin numbers (Pn614=0x02) by default. Please confirm before use.


Wiring of speed-consistent signals

The speed-consistent signal is a universally configurable switching value output signal. For details on wiring, see "Sequence Output Circuit".

5. 4 Torque Mode

Refer to "Connection Example of Torque Control" for details on the wiring related to the torque mode. It is selected by control mode selection (Pn000=2). The torque mode is divided into the internal torque command (Pn400=0) and the analog torque command (Pn400=1, factory default) by the selection of the torque command source.

5, 4, 1 Quick Guide

5. 4. 2 Basic Settings

Torque control is the operation method of inputting the torque command to the servo unit and controlling the output of the servo motor through the torque command.

The torque command selection source Pn400=0 is the internal torque command, the torque command is set directly by the parameter Pn410. In this way, the internal torque can be given by writing to address 0x0410 via RS-485. PN400 = 1, which is the analog torque instruction, is given according to the voltage connected to T-REF (CN1-9, CN1-10) and the setting value of analog torque command gain Pn405.

Function code	Parameter name	Range	Default	Unit	Communication address	When enabled		
D- 400	Torque command selection	0~1	1	-	0x0400	Immediately		
Pn400	Select the command source of torque control: 0-internal setting 1-analog input							

	Analog torque command filter time	0~ 655.35	0.00	ms	0x0404	Immediately	
Pn404	The parameter is used to smooth the torque command when we apply a delay filtering to the analog torque command (T-REF) input, usually it does not need to be changed. If the set value is too large, the responsiveness may decrease. So please set it up as we check the response.						
	Analog torque command gain	10~ 100	30	0.1V/ Rated torque	0x0405	Immediately	
Pn405	This parameter is used servo motor. Caution: Do not apply v			`	, .	·	
	Analog torque command reversed	0~1	0	=	0x0406	Immediately	
Pn406 The analog voltage corresponds to the polarity setting of the torque command: 0- Positive polarity: Positive voltage corresponds to positive torque command. 1- Negative polarity: Positive voltage corresponds to negative torque command.							
5 40-	Analog torque command dead zone range	0~3	0	V	0x0407	Immediately	
Pn407	In analog torque control speed. This is because can be eliminated by se	a slight devia	ation occurs	in the comma	and inside the servo un	it. This deviation	
Pn410	Internal torque command in torque control	-500~500			0x0410	Immediately	
The torque command value setting when selecting the command source of torque contributions.					ontrol as internal		

Set the analog voltage value of the rated torque command (T-REF, see "Analog Input Circuit" for wiring) through the analog torque command gain Pn405.

Example: The factory default parameter Pn405=30 (3V corresponds to the rated torque). If the input voltage at the T-REF terminal is 1.5V, the torque command corresponds to 50%. If 3V is input, the torque command corresponds to 100%.

5. 4. 3 Adjustment of Instruction Offset

When using torque control, even if the command is 0V, the servo motor may rotate at a slight speed. This is because there is a slight deviation in the instructions inside the servo unit. This slight deviation is called "offset".

There are two methods of automatic adjustment and manual adjustment of offset adjustment. Automatic adjustment is automatically adjusting the command offset (Fn100) and manual adjustment is manually adjusting command offset (Fn102). For details, see "Auxiliary Functions".

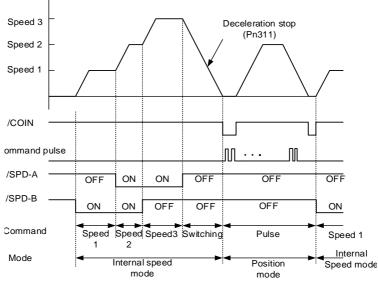
- When adjusting automatically, be sure to adjust the command offset while the servo is off and the host computer (PLC, knob, etc.) gives 0V voltage command.
 When adjusting manually, observe the running status of the motor while adjusting under servo ON.
- 3. The offset adjustment value will not be initialized if factory default

5. 4. 4 Speed Limit in Torque Control

The function to limit the servo motor speed so as to protect the driver.

In torque control, the servo motor is controlled to output the commanded torque, but the motor speed is not controlled. Therefore, when the input command torque is more than the machine torque, the motor speed will increase greatly. In this case, speed limits need to be made through this function.

5. 5 Hybrid Control Mode Selection


The servo unit can combine any two of the various control modes and switch them. The control method is selected by Pn000. The following describes the switching method and condition:

Function code	Parameter name	Range	Default	Unit	Communication address	When enabled
	Control mode selection	0~11	0	0x0000	Restart effective	
Pn000	4- Internal Speed and /SPD-B 5- Internal Speed and /SPD-B 6- Internal Speed /SPD-B 7- Position Mode mode switch (/C-S 8- Position Mode mode switch (/C-S 9- Torque Mode mode switch (/C-S 10- Analog speed clamp function car	<-> Position <-> Torque N <-> Analog S EL) signal <-> Torque N EL) signal >-> Analog Sp EL) signal <-> Speed m <-> Speed m <-> Position tion can be u	Mode: Switch co flode: Switch co peed: Switch co lode: Switch col eed: Switch col mode of zero pos mode of comm	ontrol moderated	de via ON/OFF of switch ode via ON/OFF of switch de via ON/OFF of switch de via ON/OFF of switch de via ON/OFF of switch le via ON/OFF of switch iction: When controlling se disabled: When contro	ning value /SPD-A ing value /SPD-A and ing value control ng value control ng value control peed, zero position

- 1. Switch with internal speed control (Pn000 = 4, 5, 6)
- a) The switching value input signal distribution mode is internally fixed (Pn600=0). The control mode (second mode) and internal setting speed can be switched by the /SPD-A and /SPD-B signals.

Sv	witching value input si	ignal	Speed	Pi	n000 setting		
/SPD-D (CN1-41)	/SPD-A (CN1-45)	/SPD-B (CN1-46)	positive and negative instructions	4	5	6	
	OFF	OFF	Determined by second mode	Analog speed mode	Position mode	Torque mode	
OFF	OFF	ON		Internal speed 1 (Pn304)			
011	ON	ON	Positive	Internal speed 2 (Pn305)			
	ON	OFF		Internal speed 3 (Pn306)			
	OFF	OFF	Determined by second mode	Analog speed mode	Position mode	Torque mode	
ON	OFF	ON		Internal speed 1 (Pn304)			
311	ON	ON	Negative	Internal speed 2 (Pn305)			
	ON	OFF		Internal speed 3 (Pn306)			

No limits for each mode switch. While motor running, speed control, position control or torque control can be switched to internally setting speed control.

Note: The internal speed mode is decelerated during the deceleration time set by Pn311 to stop the motor, then switch to the position mode.

b) Switching value input signal distribution mode is parameter configuration (Pn600=1 default parameter)

Through the ON/OFF switching control mode of the control mode switching (/C-SEL) signal, the signal is not configured in the factory default switching value input configuration. Therefore, the pin number configuration of the function is performed by parameters Pn601~Pn609 (0x0B).

Switching value input signal	Pn000 setting				
/C-SEL (Parameter configuration)	4	5	6		
ON	Analog speed mode	Position mode	Torque mode		
OFF	Internal speed mode				

- 2. Switch excepts the internal set speed control (Pn000 = 7, 8, 9)
- a) The switching value input signal distribution mode is internally fixed (Pn600=0).

Switching value input signal	Pn000 Setting				
/C-SEL (CN1-41)	7	8	9		
ON	Analog speed mode	Torque mode	Analog speed mode		
OFF	Position mode	Position mode	Torque mode		

b) Switching value input signal distribution mode is parameter configuration (Pn600=1 default parameter).

Switching value input signal	Pn000 Setting				
/C-SEL	7	8	9		
ON	Analog speed mode	Torque mode	Analog speed mode		
OFF	Position mode	Position mode	Torque mode		

- 3. Switch excepts internally set speed control switching (Pn000 = 10, 11)
- a) The switching value input signal distribution mode is internally fixed (Pn600=0)

Switching value input signal	Pn000 setting				
/C-SEL (CN1-41)	10	11			
ON	Speed mode with zero position clamp function	Position mode with command pulse inhibit function			
OFF	Speed mode	Position control			

b) Switching value input signal distribution mode is parameter configuration (Pn600=1 default parameter)

Switching value input signal		Pn000 Setting				
		10	11			
/ZCLAMP ON Spec		Speed mode with zero position clamp function (*1)	-			
configuration)	OFF	Speed mode	-			
/INHIBIT	/INHIBIT ON -		Position mode with command pulse inhibit function			
(parameter configuration)	OFF	-	Position control			

^{*1:} The enabled method of the switching value zero-position clamp signal (/ZCLAMP) must be used in conjunction with the parameters Pn312 and Pn313. Refer to the description of the function code.

5. 6 Other Output Signals

5. 6. 1 Servo Ready Output Signal

The servo ready output signal (/S-RDY) is a signal that indicates that the servo unit can receive servo ON (/S-ON) signals and command signals.

This signal is output under the following conditions:

- The main circuit power is on. For details of the output timing sequence of /S-RDY during power-on, refer to "Power-up enable ON timing".
- Non-hardwired base blocking status
- No alarm occurred
- When using an absolute encoder, the SEN signal turns ON (H level)
- 1. Servo-ready parameter configuration

In the factory default switching value output configuration, the signal is configured as CN1's 25th and 26th pin numbers (Pn613=0x00). Please confirm before use.

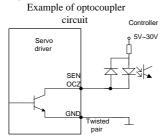
2. Servo ready wiring

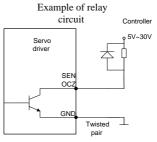
The servo ready signal is a universal configurable switching value output. Refer to "Sequence Output Circuit" for wiring details.

5. 6. 2 Warning Output Signal

The warning output signal (/WARN) is a warning function before the alarm, which makes it easier for the host device to judge the operation of the servo unit in advance. For detailed warning code, please refer to "Warning Code".

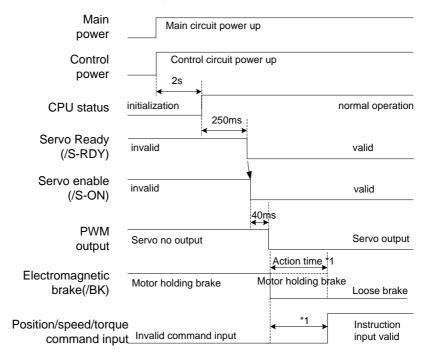
1. Configuration of warning output signals

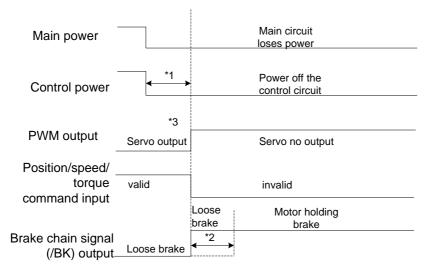

This signal is not configured in the factory default switching value output configuration. The pin number configuration (0x07/0x107) needs to be performed by parameters Pn613~Pn615.


2. Polarity setting of warning output signals

The polarity of servo warning detection can be changed by setting the switching value output configuration as 0x07 / 0x107.

3. Wiring of warning output signal


The warning output signal is a general configurable switching value output signal. See "sequence control output circuit" for wiring details.


5. 7 Timing Sequence

5. 7. 1 Power Enable ON Timing Sequence

^{1:} There is a delay in tHe electromagnetic brake operation. The operation time varies depending on the type of the brake. It is recommended to be 100ms and above to ensure that the electromagnetic brake is fully released when the command is input. This time can be omitted when the motor is without brake.

5. 7. 2 Enable ON Power-Off Timing Sequence

^{1:} Undervoltage fault occurs when the control power supply voltage drops below 170V/350V (220V series/400V series)

^{2:} The time from /BK Output to the motor actual braking varies depending on the type of the brake.
Refer to "Electromagnetic brake" for the timing of the /BK signal when the alarm or enable is OFF.
3: For the vertical shaft, if it power off while enabled On, the motor braking may not be completed and machine could move.

5. 8 Full closed-loop control

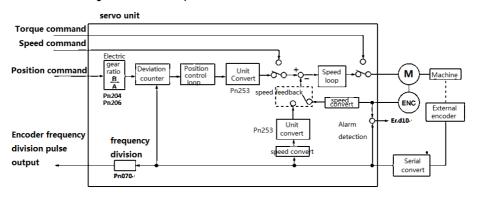

5.8.1 What is a full closed-loop system

The full closed-loop system is a system that uses external position feedback device (external encoder or grating ruler, etc.) to detect the actual machine position of the controlled object and feed back the actual machine position information to the servo unit. Because the actual machine position is directly fed back to the driver, high-precision positioning control can be realized.

The full closed-loop servo system can eliminate the error caused by mechanical transmission mechanism, while the semi-closed-loop servo system can only compensate part of the error. Therefore, the accuracy of the semi-closed-loop servo system is lower than that of the full closed-loop system. Because of the position detection device, the position control accuracy of the closed-loop feed system mainly depends on the resolution and accuracy of the detection device (grating ruler, etc.) after other factors are determined.

The structure of the full closed-loop and semi closed-loop servo system is more complicated than that of the open-loop feed system because of the position detection device. In addition, because the mechanical transmission mechanism is partially or completely included in the system, the natural frequency, damping and clearance of the mechanical transmission mechanism will become unstable factors of the system. Therefore, the design and debugging of the closed-loop and semi closed-loop systems are more difficult than those of the open-loop systems.

The system structure is as follows:



- 1. The gain adjusted in the semi closed-loop mode may not be applicable in the full closed-loop mode. Therefore, after the adjustment is completed in the semi-closed-loop mode, it is necessary to re optimize the gain parameters if switch to full closed-loop mode, to make the mechanical equipment in good operation
- 2. In order to use the full closed-loop function, the system must run normally in the semi closed-loop mode before switching to the full closed-loop mode for debugging

5.8.2 Parameter setting of full closed-loop control

Parameters	Setting content	Position	Speed	Torque	Chapter
Farameters	Setting Content	control	control	control	Chapter
Pn002	Motor rotation direction selection	0	0	0	3.2
Pn250	Application of external encoder in full closed loop	0	0	0	3.2
	control				
Pn253	Resolution of external grating ruler	0	0	0	3.3
Pn204/Pn206	Electronic gear ratio numerator / denominator	0	_	_	3.5
Pn252	The deviation coefficient between the load of the	0	_	_	3.6
	motor with one full closed-loop rotation				
Pn257	Setting of excessive deviation between motor and	0	_	_	3.6
	load				

5.8.3 Control block diagram of full closed loop control

5.8.4 Setting of motor rotation direction and machine moving direction

When setting motor rotation direction and machine moving direction for full closed-loop control, pn002 (rotation direction selection) and PN250 (use method of external encoder in full closed-loop control) must be set at the same time.

	Parameter -		Pn250 Application of external encoder in full closed loop control				
rarailleter		1		3			
		Command	EMD sameand	Reverse	EMD command	Reverse	
		direction	FWD command	command	FWD command	command	
	0	Motor rotation	CCW	CW	ccw	CW	
Pn002		direction	CCW	CW	CCW	CVV	
Motor		External encoder	FWD move	REV move	REV move	FWD move	
rotation		Command	FWD command	Reverse	FWD command	Reverse	
direction		direction	FVVD Command	command	F WD Collillatio	command	
	1	Motor rotation	CW	ccw	CW	CCW	
		direction	CW	CCW	CW	COW	
		External encoder	REV move	FWD move	FWD move	REV move	

[•] The frequency division pulse is independent of the setting of pn002, and becomes B-phase lead for forward rotation command.

- FWD direction: the direction in which the pulse count is positive
- REV direction: pulse counting is the direction of counting down

Other parameters

◆Pn002 Motor rotation direction selection

Facing the end face of the motor: 0-clockwise direction is FWD, 1-clockwise direction is FWD

◆ Pn250 Application of external encoder in full closed loop control

Set Pn250 =1 or Pn250 =3 in full closed-loop control

Para	meters	Name	Definition	Effect time	Variety
	0(default)	Application of outernal	Not use full closed-loop control		
Pn250	1	Application of external encoder in full closed	Use in standard running direction	Re-electrify	Set
1 11230	2			rto-clocully	Oct
	3	loop control	Use in reverse running direction		

Supplementary note:

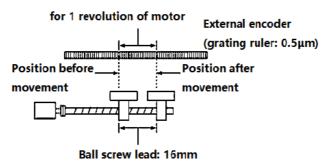
please confirm the setting value of PN250 according to the following points:

- (1) Set PN250 = 1, which is used in the standard running direction
- (2) Manually rotate the motor shaft along the CCW direction
- (3) When the full closed-loop feedback pulse counter counts positively (un012), or the servo monitoring parameter un007 (feedback pulse counter) and un012 (external encoder feedback pulse counter) change in the same direction, the setting of PN250 remains unchanged (PN250 = 1)
- (4) When the full closed loop feedback pulse counter counts down, or if the servo monitoring parameter un007 (feedback pulse counter) and un012 (external encoder feedback pulse counter) change in different directions. PN250 = 3

5.8.5 Resolution of external grating ruler

Through pn253, the pitch value of the external encoder grating ruler is set by pn253, which is also called the resolution of grating ruler

For example: [parameters]


Pitch of grating ruler of external encoder: $0.5\,\mu$ M

Ball screw lead: 16mm

If the motor is not directly connected through the reduction mechanism

Then 16mm / 0.0005mm = 32000, so the setting value is "32000".

Pitch number of external encoder

(Note) 1. When the mantissa appears, please round the number after the decimal point.

2. When the pitch value of the external encoder grating ruler with motor rotation for 1 turn is not an integer, relative to the position loop gain (KP), feedforward, position command speed, monitoring as the state of containing error. But it has nothing to do with the position loop, so it will not affect the position accuracy.

Relative parameter

Parameter	Parameters	Range	Default	Unit	Communication	Effective
code			value		address	method
Pn253	Resolution of	4~	32768	Pulse/r	0x0253	Restart
	external grating ruler	1048576				effect

Set the pitch value (feedback pulse number) of external grating ruler when the motor shaft rotates for 1 turn

5.8.6 Setting of frequency division pulse output signal of grating ruler / encoder

Set the frequency division output of external position to pn070. The set value should input a and b phase edge values.

Pitch of grating ruler of external encoder: 16mm

Ball screw lead: 16mm

Speed: 160mm / S

B sinewave frequency

The setting value is "4000" when the output is 1 μ m with 1 pulse (4 times of increasing value).

The setting value is "8000" when the output is 0.5μ m with 1 pulse (the value after 4 times increment).

When the setting is "20", the output waveform of encoder frequency division pulse is shown in the right figure.

The upper frequency limit value of encoder signal output is 4Mpps (the value increased by 4 times), so the setting value should not exceed 4Mpps. If the upper limit value is exceeded, A.511 (frequency division pulse output over speed alarm) will be output

When the setting value is "4000", the speed is 1600mm / s,

(1600 mm/s)/0.001 mm = 1600000 = 4 Mpps.

1.6Mpps < 4Mpps, so this setting value can be used

5.8.7 Setting of Electronic Gear

The setting range of the electronic gear ratio is as follows:

0.001 ≤electronic gear ratio (B/A) ≤ 16778

When the setting range is exceeded, ER.040 (parameter setting abnormal alarm) will occur.

Function	Parameters	Range	Default	Unit	Communication	Effect
code					address	
Pn204	Electronic gear ratio (molecular)	0~1073741824	64	1	0x006/0x207	Restart effect
Pn206	Electronic gear ratio (denominator)	0~1073741824	1	1	0x008/0x09	Restart effect

Calculation method of electronic gear ratio setting value

◆Semi closed-loop control

When the machine deceleration ratio of motor shaft and load side is n / M (when the motor rotates m turns, the load shaft rotates n turns), the setting value of electronic gear ratio can be obtained as following formula.

Electric gear ratio

$$\frac{B}{A} = \frac{Pn204}{Pn206} = \frac{\text{Number of encoder lines}}{\text{Movement of load shaft 1 revolution (instruction unit)}} \times \frac{m}{n}$$

$$= \frac{\text{Movement corresponded with input command 1 pulse}}{\text{Movement corresponded with grating ruler output 1 pulse}}$$

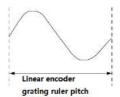
Encoder resolution

The encoder resolution can be confirmed by the servo motor model. The suffix D1 or D2 is 23 bit encoder, the suffix is Q1, Q2, R1, R2 is 17 bit encoder, the suffix is E1, E2 is 24 bit encoder

◆Full closed-loop control

Electric gear ratio

```
\frac{B}{A} = \frac{Pn204}{Pn206} = \frac{1 \text{ instruction unit movement (instruction unit)} \times \text{ number of segments of linear encoder}}{\text{Pitch of grating ruler for linear encoder}}
= \frac{\text{Movement corresponded with input command 1 pulse}}{\text{Movement corresponded with grating ruler output 1 pulse}}
```


Supplementary Notes

About resolution

The resolution used in the servo unit (the movement of 1 feedback pulse) can be obtained as following formula:

 $Resolution (the \ movement \ of \ 1 \ feedback \ pulse) = \frac{the \ grating \ ruler \ pitch \ of \ linear \ encoder}{the \ segment \ number \ of \ serial \ conversion \ unit \ or \ linear \ encoder}$

The servo unit controls the servo motor in the unit of feedback pulse

5.8.8 Setting example of electronic gear ratio

The grating ruler pitch of linear encoder = 1 cycle distance of analog voltage feedback signal sent by linear encoder

The lead of screw rod is 16mm and the transmission ratio is 1:1 (direct connection).

Semi closed-loop mode:

Steps	Contents	Mechanical composition
		Command unit: 0.0005mm load shaft 24 bit Ball screw encoder lead:16mm
1	Number of motor encoder lines	24bit encoder lines number 16777216
2	The number of pulses required for one	The command unit is 0.0005mm (0.5 μ m), and the
	turn of the screw rod	number of pulses is 32000
3	Electronic gear ratio	$\frac{B}{A} = \frac{16777216}{32000}$
4	Parameters	Pn204=16777216, Pn206=32000

Full closed-loop mode:

Steps	Contents	Mechanical composition
		command unit: 0.0005mm (0.5µm) FWD direction
1	Grating resolution of linear encoder	0.0005mm (0.5μm)
2	Command unit	0.0005mm (0.5μm)
3	Electronic gear ratio	$\frac{B}{A} = \frac{0.5}{0.5} = \frac{1}{1}$
4	Parameters	Pn204=1, Pn206=1

5.8.9 Setting of alarm detection

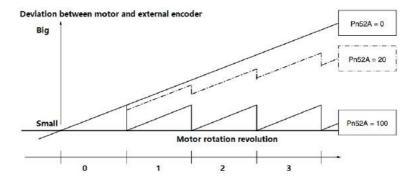
The alarm detection settings (Pn252, Pn257) are shown below

The setting of detection value excessive deviation between motor and load position (pn257) is the difference between motor encoder feedback (position) and full closed-loop external encoder feedback (load position). If the set value is exceeded, output = Er.d10 (alarm of excessive deviation between motor and load position)

	Detection	n motor and load position				
D=057	Postion mode					
Pn257	Setting range	Setting unit	Default	Effective time	Variety	
	0 ~ 1073741824	1 Command unit	1000	Immediately effective	Setting	

(Note) when set to "0", Er.d10 is not output.

Setting of deviation coefficient (Pn252) between motor loads when full closed-loop rotation 1 turn


Set the "coefficient of deviation between motor and external encoder" when the motor rotates for 1 turn. It can be used to prevent out of control caused by damage of external encoder, or to detect "sliding" in belt mechanism.

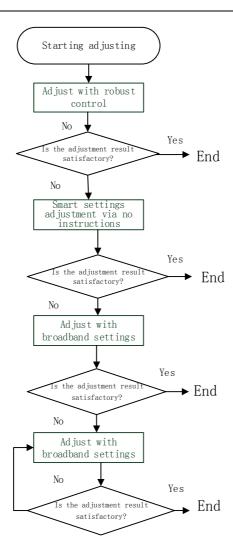
◆ Setting Design

When the sliding rate of the belt is large or seriously twisted, please increase the value.

If the setting value is "0", the value of the external encoder is read directly.

When the factory setting value is "20", the second turn starts from the deviation after 1 revolution of the motor multiplied by 0.8

Relavant parameters


	Coefficient of the deviation between the motor and the external encoder for one full closed-loop rotation						
D=050	Postion mode						
Pn252	Setting range	Setting unit	Default	Effective time	Variety		
	0 ~ 100	1%	20	Immediately effective	Setting		

6 Adjustment

6. 1 Adjustments

6. 1. 1 Adjustments Steps

Adjustments refer to optimaize the function of responsiveness by adjusting the servo unit's servo gain. Servo gain is set by the combinations of many parameters, including speed circle gain, position circle gain, filter, friction compensation, rotation inertia and so on. These paramenters would influence with each other, so you must take the balance among all paramenters into the consideration while setting. The factory settings of the servo gain are stable settings. Use all the adjusting functions according to the uses' mechanical conditions in order to improve the responsiveness. The following figure is basic adjustment procedure flow chart; please adjust the machine according to the status and operating conditions of the machine.

6. 1. 2 Safety Precautions When Adjusting

When you are making adjustments, please set the servopack protection functions shown below under appropriate conditions.

Set the overtravel

Please set the overtravel and you could refer to the servo enable and overtravel setting if you want more details.

ii. The settings of the torque limit

The torque limit function is about calculate the torque that mechanical motions need in order to make sure that the torque is not greater than this troque limit value. If the torque is set below the value required for operation, overshoot or vibration may occur.

See more details in the "torque limit".

iii. Set excessive position deviation alarm value

The excessive position deveiation alarm is an effective protection function when we are using servo unit for position control. When the motor operation does not match the command, you can detect the abnormal condition and stop the motor by setting an appropriate position deviation alarm. The position deviation is the difference between the position command value and the actual position. The position deviation can be expressed by the relationship between the following position loop gain (Pn103) and motor speed.

$$Position \ deviation instruction \ unit = \frac{Motor \ speed[min^{-1}]}{60} * \frac{Encoder \ resolution^{*1}}{Pn103[0.1/s]/10^2} * \frac{Pn206}{Pn204} * \frac{Pn206}{Pn$$

When the acceleration/deceleration of the position command exceeds the tracking ability of the motor, the follow-up hysteresis will become large, resulting in the positional deviation not satisfying the above relation. Please reduce the acceleration and deceleration of the position command to the value that can be tracked by the motor or increase the value of the excessive position error alarm.

iv. Set the vibration detection function

Please initialize (Fn105) the detection value detected by the vibration and set an appropriate value for the vibration detection function. For details, refer to the corresponding "Accessibility"

v. Set excessive position deviation alarm value when servo is ON

If the servo is turned ON while the position deviation is accumulated, the motor will return to the original position to make the position deviation "0" and avoid causing a danger. In order to avoid this kind of situation, you can set an excessive position deviation alarm value when the servo is turned on to restrict the operation.

6. 2 Robust Control

In factory default, the robust control function is valid. When resonance and vibration occur, please change the attune value and load value via Fn301 or set Pn177 and Pn178.

6, 2, 1 Profile

Robust function could get stable response through adjusting the whole system automatically no matter what kind of mechanisim or fluctuation of load.

Function code	Name	Range	Default	Unit	Communication address	When enabled	
Pn175	Robust control selection	0x00~0 x01	1	_	0x0175	After restart	
FIII75	Set the robust control function switch: 0-invalid 1-valid						
	Robust control tuning value	10~80	40.0	Hz	0x0177	Immediately	
Pn177	Set a greater robust control gain tuning value, systematic response gets faster, but system overshoot and excessive noise may occur						
Pn178	The minmum value of robust control	0~500	0	%	0x0178	Immediately	
	oise may occ	ur, and we	could inc	ematic response gets faster, but to crease this value in order to decre t when torque is excessive.			

Robust control function is valid in position control or speed control and invalid in torque control. When robust control is valid, some of the control functions of the table below would be restrained.

Function name	Operation	Executable conditions and notes
Vibration detection value initialization (Fn105)	Yes	Robust control is invalid in operation, and it turns to be valid when the operation is over
Bandwidth setting(Fn303)	No	
EasyFFT (Fn401)	Yes	Robust control is invalid in operation, and it turns to be valid when the operation is over
Gain shift	No	
Inertia recognization	Yes	Robust control is invalid in operation, and it turns to be valid when the operation is over
Mechanical analysis	Yes	Robust control is invalid in operation, and it turns to be valid when the operation is over

Parameters which become invalid when robust control function are valid. When we set robust control function valid in factory default, the Pn100 \, Pn101 \, Pn102 \, Pn103 \, Pn105 \, Pn106 \, Pn107 \, Pn140 \, Pn110 \, Pn170 \, are invalid.

6. 2. 2 Steps

Robust control function could be set via the auxiliary function Fn301 on panel operator and more details on" Accessibility", or we could set relevant parameters via" parameters setting"

Before operating the robust control function, please confirm the setting below, if not, it will display "NO-OP" in operation: 1. Robust control function is valid (Pn175=1) 2. No-motor debugging function is invalid (Pn730=0)

6. 2. 3 Supplement

In robust control, due to the increase of the tuning value, the system may cause resonance noise. You can set the Pn151 to choose whether to automatically set the notch. The factory default is "Auto-tuning". Only when the corresponding notch function is not needed, it is set to "Auto-adjust without auxiliary function."

Function code	Name	Range	default	Unit	Communication address	When enabled
Pn151	Automatic adjustment and selection of notch filter 2	0x00~0x0 1	1	-	0x0151	Immediately
	O-No automatic adjustment via auxiliary functions 1-Automatic adjustment via auxiliary functions					

6. 2. 4 Relevant Parameters

The parameters need to be set are shown as below when operating robust control function:

Parameter	Name			
Pn175	Robust switch			
Pn104	First torque command filter			
Pn156	Second notch filter frequency			
Pn157	Second stage notch filter Q value			

6. 3 Inertia Recognition

6. 3. 1 Profile:

Inertia recognition means that the servo unit performs automatic operation (forward and reverse reciprocating motion) without issuing commands from the upper device, and the load inertia moment is recognized during operation. The rotary inertia ratio (ratio of load inertia to motor rotor inertia) is the reference parameter for performing the gain adjustment, and the correct value must be set as far as possible. The load moment of inertia can be calculated based on the weight and composition of each part of the machine, but the operation is very tedious. With this function, after the motor is driven several times in the positive/negative direction, a high-precision load moment of inertia value can be obtained.

The motor operates according to the following operating specifications.

The highest speed: ± 1000min-1 (changeable)

Acceleration: ± 20000min-1/s (changeable)

Travel distance: maximum ± 2.5 turns (changeable)

6. 3. 2 Steps

The inertia recognition function can only be identified by the upper computer debugging software VCSDsoft. For details on the identification procedure, refer to "Upper Position Debugging Related" - "Inertia Identification".

6. 3. 3 Supplyment

- When identifying the inertia, please make sure that the system can operate the range and set the operating
 conditions reasonably according to the operable range. Under different operating conditions, the
 recognition result may have minor deviations.
- If the servo torque limit is set too small, the result of inertia identification may be affected, resulting in discrepancy between the identification result and the actual inertia. Please confirm before identification.
- After inertia identification, after changing the inertia ratio (Pn100), the original gain-related parameters of the servo system need to be re-adjusted, otherwise vibration and noise may occur.

6. 4 Intelligent Setting

6. 4. 1 Profile

Users can choose intelligent setting with command input and no command input

(1) No command input

It means the function of automatically adjusting the servo unit according to the mechanical characteristics when the automatic operation (forward and reverse reciprocating motions) is performed within the set range. Intelligent settings can be performed without connection to the control system. The automatic operation is as follows

- Highest speed: motor rated speed
- Acceleration torque: motor rated torque about 100%
- Move distance: can be set arbitrarily. The factory setting is equivalent to 3 turns of the motor
- (2) command input

It is the method of automatically adjusting the running command from the host control system. The command intelligent setting can also be used for additional adjustments after the commandless intelligent setting. When the correct moment of inertia ratio is set, no-instruction intelligent setting can be omitted, and only the intelligent setting operation with instructions is performed.

The command smart setting starts with the current speed loop gain (Pn101) as a reference. If vibration occurs at the start of the adjustment, correct adjustment cannot be performed. In this case, lower the speed loop gain (Pn101) until the vibration disappears, and then readjust.

The intelligent setting process adjusts the following items:

- Moment of inertia ratio (intelligent setting without command)
- Gain adjustment (speed loop gain, position loop gain, etc.)
- Filter adjustment (torque command filter, notch filter)
- Friction compensation
- IF suppression control
- Vibration suppression
- Low-frequency vibration suppression (only when Mode = 2 or 3) (without command smart setting)

6. 4. 2 Steps

The intelligent setting function cannot be set by the panel operator, and it needs to cooperate with the host computer debugging software to perform related operations. The instructionless intelligent setting is slightly different from the related operation of the instructional intelligent setting. For detailed steps, see "host computer operation instructions" - "Intelligent setting".

(1) Confirmation before execution

Before performing intelligent settings, be sure to confirm the following settings. If set incorrectly, this function cannot be performed during operation.

- No overtravel has occurred
- No torque control

- Gain switching selection switch is manual gain switching (Pn110 = 0) and is the first gain
- No motor test function is invalid (Pn730 = 0)
- No alarm or warning occurred
- Robust control function is invalid (Pn175 = 0)

When the commandless intelligent setting is executed in the speed control status, it will automatically switch to position control to perform adjustment, and return speed control after adjustment is completed.
 The intelligent command setting cannot be executed in the speed control status.
 During the intelligent setting process, the command pulse input override switch function becomes invalid.

(2) Failed to perform adjustment or adjustment failed example

In the following occasions, intelligent settings will not be performed properly. Please use the bandwidth setting (see "Bandwidth setting" for details).

- The motor is in power (in servo ON) in position control (with command intelligent setting)
- When the mechanical system can only run in one direction
- The scope of activities is narrow, below 0.5 laps
- When the moment of inertia changes within the set operating range
- When the mechanical dynamic friction is large
- The mechanical rigidity is low and vibration occurs during positioning
- When P (proportional) control is selected, "Load inertia moment measurement" is selected, In the moment
 of inertial recognition, or when switching from P/CON signal to P control
- When using the mode switch, when "Load moment of inertia measurement" is selected, the mode switch function becomes invalid during the moment of inertia recognition and becomes PI control. The mode switch function becomes active again after the moment of inertia recognition is completed.
- When speed feed forward and torque feed forward are input
- When the positioning complete width (Pn262) is small

1, When there is no command intelligent setting, when the variable inertia load is changed and the adjustment fails, please replace the adjustment mode and adjust with broadband settings or robust control.

2. In the intelligent setting, please set "electronic gear ratio (Pn204/Pn2016)" and "positioning completion range (Pn262)" to the actual running values, otherwise the adjustment may fail or the adjustment result does not match the actual operation result.

6. 4. 3 Supplyment

(1) Vibration suppression function

Before the intelligent setting, you can set whether the related vibration suppression function is automatically set. The factory default is to set automatically, please set the corresponding function switch to "Do not adjust automatically" before you want to change the value of the smart setting.

Function code	Name	Range	Default	Unit	Communication address	When enabled
---------------	------	-------	---------	------	-----------------------	--------------

			,					
	IF suppression control options	0x00~0x11	0x0010	_	0x0140	Immediately		
Pn140	The IF suppression control function effectively suppresses the continuous vibration of about 100 to 1000 Hz that occurs when the control gain is increased. 0x1#: Automatically set IF vibration suppression frequency through smart setting and bandwidth setting 0x0#: Not set automatically through intelligent setting and bandwidth setting, only manual setting 0x#1: IF suppression frequency setting is valid 0x#0: IF suppression frequency setting is invalid							
Pn150	Notch filter 1 automatic adjustment selection	0x00~0x01	1	_	0x0150	Immediately		
	0- Automatic adjustment without auxiliary functions 1- Automatic adjustment through auxiliary functions							
Pn151	Notch filter 2 automatic adjustment selection	0x00~0x01	1	1	0x0151	Immediately		
	O- Automatic adjustment without auxiliary functions 1- Automatic adjustment through auxiliary functions							
Pn231	Low frequency vibration suppression function automatic adjustment selection	0x00~0x01	1	ı	0x0231	Immediately		
	This parameter is set in the intelligent settings, bandwidth settings and other auxiliary functions under low-frequency vibration suppression is automatically set to choose: 0 - Vibration suppression function is not automatically adjusted by auxiliary functions 1- Vibration suppression function is automatically adjusted by auxiliary functions							

(2) Feed forward function

In the factory setting mode, when the tuning mode is executed by "2", "3", "feedforward command (Pn109)", "speed feedforward (VREF) input", and "torque feedforward (T-REF) input "will become invalid.

According to the system configuration, if you want to use "V-REF input", "Torque feedforward (T-REF) input" and model tracking control from the upper device at the same time, set Pn249 = 1.

When using model tracking control under this function, the model tracking control will set the optimal feed forward within the servo. Therefore, the "V-REF input" and "T-REF input" from the upper device are not always used at the same time. If the input feedforward is incorrect, overshoot may be caused. However, it can be used as appropriate, so please pay attention.

6. 4. 4 Related Parameters

The parameters that may be changed when executing the smart setting function are as follows:

Parameter	Name
Pn100	Rotary inertia ratio
Pn101	First speed gain
Pn102	First speed integral time constant

Pn103	First position gain
Pn104	First torque command filter
Pn140	Medium frequency vibration suppression control selection
Pn141	Medium frequency vibration suppression inertia modification
Pn142	IF suppression frequency
Pn143	IF damper attenuation gain
Pn153	Notch filter 1 frequency
Pn154	Notch filter 1Q value
Pn155	Notch filter 1 depth
Pn156	Notch filter 2 frequency
Pn157	Notch Filter 2Q Value
Pn158	Notch filter 2 depth
Pn240	Model tracking control selection
Pn241	Model tracking control gain
Pn242	Model tracking control attenuation coefficient
Pn243	Model tracking control speed feed forward gain
Pn244	Model tracking control forward torque feed forward gain
Pn245	Model tracking control reverse torque feed forward gain

6. 5 Bandwidth Setting

6. 5. 1 Profile

The bandwidth setting is a method of inputting a speed command or a position command from the host device, and manually adjusting the running speed.

By adjusting one or two values with the bandwidth setting, the relevant servo gain setting can be automatically adjusted.

- The bandwidth setting adjusts the following items:
- Gain adjustment (speed loop gain, position loop gain, etc.)
- Filter adjustment (torque command filter, notch filter)
- Friction compensation
- IF suppression control
- Low frequency vibration suppression
- Use the bandwidth setting when you cannot achieve satisfactory response characteristics after setting it by smart settings. If you want to further fine-tune each servo gain after adjusting the bandwidth setting, see "Manual adjustment" for manual tuning.

6. 5. 2 Steps

Before performing bandwidth setting, be sure to confirm the following settings. If it is set incorrectly, "NO-OP" will be

displayed in the operation and this function cannot be performed.

- Invalid selection of no motor test function (Pn730 = 0)
- Robust control selection is invalid (Pn175 = 0)
- Tuning mode is set to 0 or 1 when tuning is performed by speed control

The bandwidth setting procedure can be performed by any one of the panel operator or the upper level debugging software. However, the panel operator can only operate when the tuning mode is set to "0-stability" or "1-high response". For detailed operation procedure, see "Bandwidth Setting (Fn303)". When positioning-specific adjustments "2-positioning" and "3-positioning are not required to be over-tuned" are required, they must be used in conjunction with "host computer debugging software".

After the inertia recognition or intelligent setting correctly set the moment of inertia ratio (Pn100), perform the broadband setting operation.

6. 5. 3 Supplyment

(1) Viabration suppression function

Before setting the bandwidth, you can set whether the related vibration suppression function is automatically set. The factory default is to set automatically. Please set the corresponding function switch to "Do not adjust automatically" before you want to change its value through the bandwidth setting.

	Function code	Name	Range	Default	Unit	Communication address	When enabled			
		IF suppression control options	0x00~0x11	0x0010	ı	0x0140	Immediately			
	Pn140	The IF suppression control function effectively suppresses the continuous vibration of about 100 to 1000 Hz that occurs when the control gain is increased. 0x1#: Automatically set IF vibration suppression frequency through smart setting and bandwidth setting 0x0#: Not set automatically through intelligent setting and bandwidth setting, only manual setting 0x#: IF suppression frequency setting valid								
		0x#0: IF suppression								
	Pn150	Notch filter 1 automatic adjustment selection	0x00~0x01	1	_	0x0150	Immediately			
		O- Automatic adjustment without auxiliary functions 1- Automatic adjustment through auxiliary functions								
		Notch filter 2 automatic adjustment selection	0x00~0x01	1	ı	0x0151	Immediately			
Pn151	0- Automatic adjustment without auxiliary functions 1- Automatic adjustment through auxiliary functions									
	Pn231	Low frequency vibration suppression function automatic adjustment selection	0x00~0x01	1	=	0x0231	Immediately			

This parameter is set in the intelligent settings, bandwidth settings and other auxiliary functions under low-frequency vibration suppression is automatically set to choose:

- 0 Vibration suppression function is not automatically adjusted by auxiliary functions
- 1- Vibration suppression function is automatically adjusted by auxiliary functions

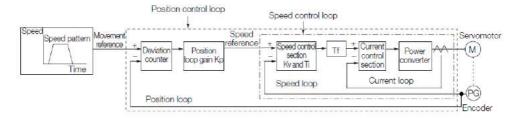
(2) Feed forward function

In the factory setting mode, when the tuning mode is executed by "2", "3", "feedforward command (Pn109)", "speed feedforward (VREF) input", and "torque feedforward (T-REF) input "will become invalid. According to the system configuration, if you want to use "V-REF input", "Torque feed forward (T-REF) input", and model tracking control from the host device at the same time, set Pn249 = 1.

When using model tracking control upder this function, the model tracking control will set the optimal feed forward within the servo. Therefore, the "V-REF input" and "T-REF input" from the upper device are not always used at the same time. If the input feedforward is incorrect, overshoot may be caused. However, it can be used as appropriate, so please pay attention.

6. 5. 4 Related Parameters

The relevant parameters and parameters that are automatically set when executing the bandwidth setting function are as follows:


Parameter	Name
Pn100	Rotary inertia ratio
Pn101	First speed gain
Pn102	First speed integral time constant
Pn103	First position gain
Pn104	First torque command filter
Pn140	Medium frequency vibration suppression control selection
Pn141	Medium frequency vibration suppression inertia modification
Pn142	IF suppression frequency
Pn143	IF damper attenuation gain
Pn153	Notch filter 1 frequency
Pn154	Notch filter 1Q value
Pn155	Notch filter 1 depth
Pn156	Notch filter 2 frequency
Pn157	Notch Filter 2Q Value
Pn158	Notch filter 2 depth
Pn240	Model tracking control selection
Pn241	Model tracking control gain
Pn242	Model tracking control attenuation coefficient
Pn243	Model tracking control speed feed forward gain
Pn244	Model tracking control forward torque feed forward gain

Pn245	Model tracking control reverse torque feed forward gain
-------	---

6. 6 Manual Adjustment Function

After the intelligent setting and bandwidth setting adjustment, the function for further individual adjustment is required:

6, 6, 1 Servo Gain

To manually adjust the servo, gain, adjust the servo gains one by one based on understanding the composition and characteristics of the servo unit. In most cases, if there is a large change in one parameter, the other parameter must be adjusted again. In order to confirm the response characteristics, preparations must be made to observe the output waveform of the analog monitor using a measuring instrument. The servo unit consists of three feedback loops (position loop, speed loop, and current loop). The more the inner loop, the more responsive it needs to be. Failure to follow this principle will result in poor responsiveness or vibration. Since the current loop ensures sufficient responsiveness, the user does not have to make adjustments. By setting the following servo gains, the response characteristics of the servo unit can be adjusted.

Function code	parameter	Range	Default	Unit	Communication address	When enabled	
Pn100	Rotary inertia ratio	0~20000	100	%	0x0100	Immediately	
	Moment of inertia rat	io = load inerti		shaft cor r *100%	nversion / rotor moment of in	ertia of servo	
	First speed gain	1~2000	40.0	Hz	0x0101	Immediately	
Pn101	Determine the parameters of the speed loop responsiveness. If the response of the speed loop low, it becomes a delay factor of the outer position loop, so overshoot or vibration of the speed command occurs. In the range where the mechanical system does not generate vibration, the larger the setting value, the more stable the servo system is. The better the responsiveness						
Pn102	First speed integration time constant	0.15~512	20.00	ms	0x0102	Immediately	
	In order to respond to small input, the speed loop contains integral elements. Because this integral element is a delay element for the servo system, when the time parameter is set too large, overshoot may occur, or the positioning time may be prolonged, and the responsiveness may be deteriorated.						
	First position gain	1~2000	40.0	1/s	0x0103	Immediately	
Pn103	The position loop response is determined by the position loop gain. The higher the setting of the position loop gain, the higher the responsiveness and the shorter the positioning time. The position loop gain cannot be increased beyond the rigidity of the mechanical system. To increase the position loop gain to a larger value, the rigidity of the machine must be increased.						

	First torque command filter	0~655.35	1.00	ms	0x0104	Immediately		
Pn104	Adjusting the parameters of the torque command filter may eliminate the machine vibration caused by the servo drive. The smaller the value, the better the responsiveness can be controlled. However, the conditions are restricted by the machine conditions.							
Pn401	Torque command second-order low-pass filter cut-off frequency	100~5000	5000	Hz	0x0401	Immediately		
	Use this parameter to set the cutoff frequency of the second-order torque filter. When this parameter is set to 5000, the function of the filter is invalid.							
Pn402	Torque command second-order low- pass filter Q	0.5~1	0.50	1	0x0402	Immediately		
	By setting this parameter, the Q value of the second-order torque filter can be set. Increasing the Q value can improve the system responsiveness, but noise will be generated when the setting is too large.							

6. 6. 2 Gain Switching

The gain switching function includes "manual gain switching" that uses an external input signal and "automatic gain switching" that automatically switches. By using the gain switching function, the gain can be increased during positioning, the positioning time can be shortened, and the gain can be reduced and vibration can be suppressed when the motor stops.

Function code	Parameter name	Range	Default	Unit	Communication address	When enabled	
	Gain switching mode selection switch	0x00~0x01	0	_	0x0110	Immediately	
Pn110	The gain switching function includes two methods of "manual gain switching" using an external input signal and "automatic gain switching" automatically switching. By using the gain switching function, the gain can be increased during positioning, and the positioning time can be shortened when the motor is stopped. Reduce gain and suppress vibration. 0-Manual Gain Switching by Manual Gain Switching of External Input Signal (G-SEL) 1- When the automatic switching condition is established (Pn111), it automatically switches from the first gain to the second gain; otherwise, it switches back to the first gain.						
	Position control gain automatic switching condition	0x00~0x05	0	_	0x0111	Immediately	
Pn111	Set the conditions for automatic gain switching:						
	Gain switching transition time 1	0~65535	0	ms	0x0112	Immediately	
Pn112	After waiting for the waiting time from the time when the switching condition has been established, the gain of the first position loop is increased to the gain of the second position loop in the transition time.						

	Gain switching transition time 2	0~65535	0	ms	0x0113	Immediately		
Pn113	After waiting for the waiting time from the time when the switching condition has been established, the second position loop gain is changed to the first position loop gain to change linearly during the transition time.							
	Gain switching wait time 1	0~65535	0	ms	0x0114	Immediately		
Pn114	The time from when the switching condition is established from the first gain to the second gain to when the switching is actually started							
Gain switching wait time 2 0~65535 0 ms				0x0115	Immediately			
Pn115	The time from when the switching condition is established from the second gain to the second gain to when the switching is actually started							

Switched gain combination

Switching gain	Speed loop gain	Velocity loop integration time constant	Position loop gain	Torque command filter	Model tracking control gain	Model tracking control gain correction
First gain	First speed loop gain (Pn101)	First velocity loop integration time constant (Pn102)	First position loop gain (Pn103)	First torque command filter (Pn104)	First model tracking control gain (Pn241)	First model tracking control gain attenuation coefficient (Pn242)
Second gain	Second speed loop gain (Pn105)	Second velocity loop integration time constant (Pn106)	Second position loop gain (Pn107)	Second torque command filter (Pn108)	Second model tracking control gain (Pn246)	Second model tracking control gain attenuation coefficient (Pn247)

Gain switching of model tracking control gain and model tracking control attenuation coefficient is only applicable to "manual switching gain".
 Sain switching of model tracking control gain and model tracking control attenuation factor is switched only when the following conditions are met:
 ■ No instruction
 The motor is stopped

Manually switch

"Manual switching gain" means the first gain and the second gain are switched by the external input signal gain switching signal (/G-SEL).

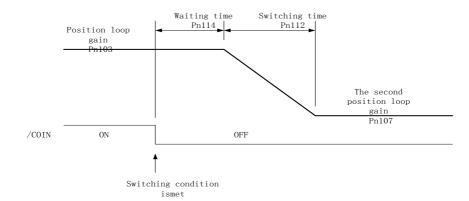
Gain switching configuration a)

114

The signal is not configured in the factory default switch configuration. Therefore, the pin number configuration (0x0E) needs to be performed by parameters Pn601~Pn609.

b) Gain switching wiring

The gain switching signal is a universally configurable digital input. See "Sequence Input Circuit" for wiring details.


(2) Automatic switching

Function code	Parameter	Range	Default	Unit	Communicati on address	Way to be effective
	Position control gain automatic switching 0x00~0x05 0 —				0x0111	Immediately
Pn111	Set the conditions for automatic gain switc 0-Position completion signal ON 1-Position completion signal OFF 2-positioning proximity signal ON 3-positioning proximity signal OFF 4-position command filtered to 0 and pulse 5-position command pulse input ON If the condition is met, switch to the 2nd ga	input OFF	itch to the 1	st gain.		

[&]quot;Auto switching gain" is only valid in position control. The switching conditions are performed by the following settings: Switching logic

parameter	Switching conditions	Switching gain	Switching waiting time	Switching time
Pn111 setting corresponding condition	Condition A is met	The first gain → Second gain	Waiting time 1 Pn114	Switching time 1 Pn112
	Condition A isn't met	The second gain → First gain	Waiting time 2 Pn115	Switching time 2 Pn113

For example, in the automatic switching gain mode conditioned on the completion of the positioning signal (/COIN), it is assumed that the position loop gain Pn103 is switched to the second position loop gain Pn107. The /COIN signal of the switching condition is ON, and after waiting for the waiting time Pn114 from the time when the switching condition has been met, the gain is changed from Pn103 to Pn107 in a straight line during the switching time Pn112.

6. 6. 3 Speed Feedforward

Feedforward is the function of feedforward compensation to shorten the positioning time during position control. The speed feed forward is divided into internal speed feed forward (Pn121/Pn122) and analog (V-REF) given speed feed forward (using V-REF as speed feed forward selection Pn123). This command is sent to the servo together with the position command unit.

Related parameters

Function code	Parameter	Range	Def	ault	Unit	Communication address	When enabled
Pn121	Speed feed forward gain)	%	0x0121	Immediatel y
FIIIZI	Speed feed forward is a function to shorten the positioning to servo unit performs position control. Note: When the feed forward command is too large, position the response while setting appropriatly						
Pn122	Speed feedforwar d filter time	0~64	0.00	Ms		0x0122	Immediatel y
	Speed feed for jump caused b			e con	stant, which car	slow position overshoot a	nd torque
Pn123	Use V- REF as speed feedforwar d selection	0x00~0x0 1	0		_	0x0123	After restart
Speed feedforward is a function to shorten the positioning time. It is possible to select spee forward via external analog V-REF. 0-None 1- Use V-REF as speed feed forward input							speed feed
Pn300	Analog speed command gain	150~3000	600	0.01V/Rated speed		0x0300	Immediatel y
	the servo moto	r.		-	•	set the analog voltage valu	, ,

6. 6. 4 Torque Feedforward

Torque feed forward is a function to shorten the positioning time. The command is generated by deviating the position command on the upper device side. This command is sent to the servo unit together with the speed command. The speed command from the upper device is connected to V-REF (CN1-5, 6), and the torque feedforward command is connected to T-REF (CN1-9, 10).

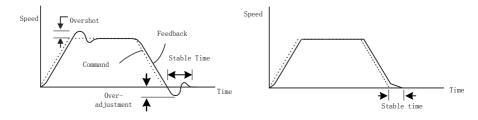
Related parameters

Function code	Parameter	Range	Defaul t	Unit	Communication address	When enabled			
Pn124	Speed/positio n control selection (T- REF assignment)	0~1	0	I	0x0124	After restart			
	Torque feed forward is a function to shorten the positioning time. Torque feedforward can be selected by external analog T-REF. 0-None 1- Use T-REF as a torque feed forward input								
Pn405	Analog torque command gain 10~10 30 0.1V/ Rated torque 0x0405 Immediatel y								
	Required for the rated torque when using this parameter to set the analog voltage value (T-REF) of the servo motor. Caution: Do not apply -10~10V voltage. Exceeding this range may cause damage to the driver.								

6. 6. 5 PI-P Switching

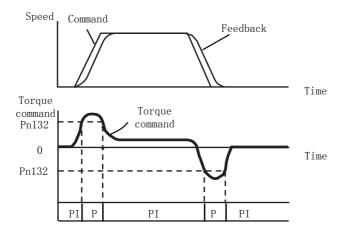
When the control mode is speed control or position control, PI-P control can be switched. When the control mode is mixed, it is valid only when it is switched to internal speed, analog speed and position mode. The PI-P switching can be switched by the binary signal manual PI-P control signal (/P-CON). When the /P-CON signal is turned ON, P control is performed. The conditions for selecting automatic switching can also be selected by the parameter speed loop PI-P switching condition selection switch Pn131.

- (1) Manual PI-P Control
- a) Manual PI-P Control Configuration

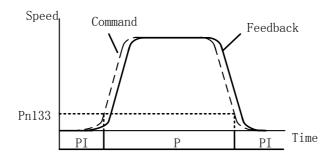

The signal is not configured in the factory default switch configuration. Therefore, the pin number configuration (0x05) needs to be performed by parameters Pn601~Pn609.

b) Manual PI-P control wiring

The gain switching signal is a universally configurable digital input. See "Sequence Input Circuit" for wiring details.

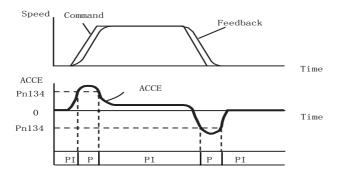

(2) Automatic switching

For automatic PI-P switching, the switching condition is set by Pn131, and the switching condition value is set by Pn132, Pn133, Pn134, and Pn135. By properly setting the switching conditions and condition values, overshoot during acceleration and deceleration can be suppressed and the settling time can be shortened.

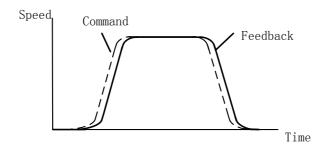


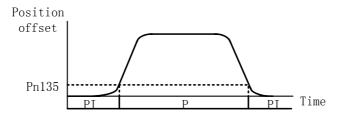
Function code	Parameter	Range	Def	ault	Unit	Communication address	When enabled	
	Speed loop PI-P switching condition selection switch	0x00~0x04	(0x0131	Immediately	
Pn131	The mode switch is a function that automatically performs P control and PI control switching. Setting the switching condition by this parameter and satisfying the corresponding switching condition value can suppress overshoot during acceleration and deceleration and shorten the settling time. 0 - Conditioned by internal torque command 1- Conditional speed instruction 2- Conditional acceleration 3- Conditional position deviation pulse 4-No mode switch function							
Pn132	Speed loop PI-P switching condition (torque command)	0~800	20		%	0x0132	Immediately	
	When the torqu					this parameter, the spe se PI control	ed loop will be	
Pn133	Speed loop PI-P switching condition (speed command) When the speed	0~10000 command exc	0 ceeds th	rpm		0x0133	Immediately	
Pn134	switched to P cont Speed loop PI-P switching conditions (acceleration)	orol, otherwise l	O Contro			0x0134	Immediately	
	When the speed command exceeds the acceleration set by this parameter, the speed loop will be switched to P control, otherwise PI control							
Pn135	conditions (position deviation)	0~10000	0	Ins	struction unit	0x0135	Immediately	
	When the position deviation exceeds the value set by this parameter, the speed loop will be switched to P control, otherwise PI control							

When the switching condition of the mode switch is set as a torque command [factory setting], when the torque command exceeds the torque set in Pn10C, the speed loop will switch to P control. The factory torque command value is set to 200%.



When the switching condition of the mode switch is used as a speed instruction, when the speed command exceeds the speed set in Pn10D, the speed loop will switch to P control.




When the switching condition of the mode switch is used as acceleration

When the speed command exceeds the acceleration set in Pn10E, the speed loop will switch to P control.

When the switching condition of the mode switch is set as the position deviation, when the position deviation exceeds the value set in Pn10F, the speed loop will switch to P control. This setting is valid only for position control.

7 Accessibility

7. 1 List of Auxiliary Functions

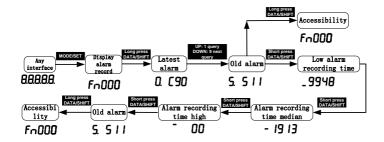
The auxiliary function is displayed with a number starting with Fn, and functions related to the operation and adjustment of the servo motor are performed.

The following table lists the auxiliary functions and reference items.

Auxiliary function number	Function description				
Fn 000	Display alarm record				
Fn 001	Clear alarm record				
Fn 002	Software reset				
Fn 003	Restore factory parameters				
Fn 005	JOG operation				
Fn 006	Program JOG operation				
Fn 100	Automatic adjustment of instruction offset				
Fn 101	Speed command offset manual adjustment				
Fn 102	Torque command offset manual adjustment				
Fn 103	Current offset automatic adjustment				
Fn 104	Current offset manual adjustment				
Fn 105	Initialize the detected value of the vibration detection				
Fn 303	Bandwidth setting				
Fn 401	Easy FFT				
Fn 402	Online vibration monitoring				

7.2 Displaying Alarm Logs (Fn000)

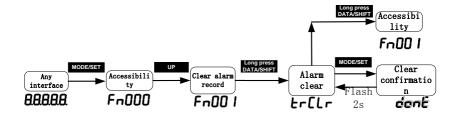
7.2.1 Overview


The servo unit has a record alarm function and can record up to 10 alarms that have occurred. This auxiliary function allows you to confirm the number and time of the alarm (measurement of the duration of the control power supply and the main circuit power supply in 100ms increments, and the function to display the total operation time in the event of an alarm, if it is 365 days per year. it can last for about 31 years if you operating it 24 hours a day.)

- 1. When the same alarm occurs continuously, if the interval between alarms is less than
- 1 hour, it will not be saved. If it exceeds 1 hour, it will be saved.
- 2. When an alarm does not occur, "

 ----" is displayed on the panel operator.
- 3, the alarm record can only be cleared by "clear alarm record (Fn001)".

7.2.2 Operating Procedure



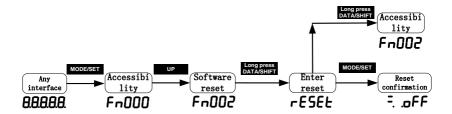
7.3 Clear Alarm Record (Fn001)

7.3.1 Summary

The alarm record of the servo unit can only be cleared by clearing the alarm record (Fn001) function. Alarm recording cannot be cleared by resetting the alarm or switching off the main circuit power of the servo unit.

7.3.2 Operating Procedure

7.4 Software Reset (Fn002)

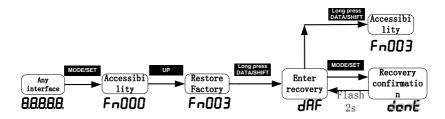

7.4.1 Summary

The function of resetting the servo unit is from the inside by software. Used to re-power on or reset the alarm after changing the parameter setting. It is also possible to validate the setting without turning the power back on.

- 1. This function must be started with servo off.
- This function has nothing to do with the upper device to reset the servo unit. Same as when the power is turned on, the servo unit outputs the ALM signal, and other output signals may also be forcibly changed.

7.4.2 Operating Procedure

7.5 Restoring Factory Parameters (Fn003)


7.5.1 Overview

The parameter is restored to the function used at the factory setting.

- 1. Initialization of the parameter setting value must be performed in the servo OFF state. It cannot be executed while the servo is ON.
- 2. For the setting to take effect, the servo unit must be turned on again after the operation.
- 3. When this function is executed, the values adjusted with parameters Fn100, Fn101, Fn102, Fn103, Fn104 will not be initialized.

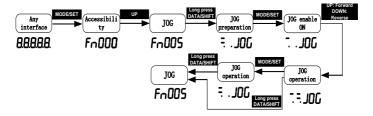
7.5.2 Operating Procedure

7.6 JOG Operation (Fn005)

7.6.1 Profile

The JOG operation is a function that confirms the operation of the servo motor by speed control without connecting a host device.

To perform JOG operation, the following confirmation must be made in advance:

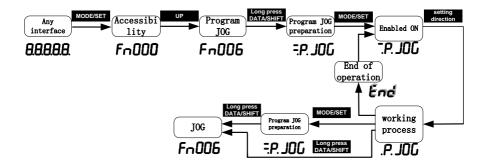

- The motor is in the enabled state and the Jog operation is invalid during the operation.
- It is recommended that the load inertia is not more than 30 times the motor inertia; otherwise it may cause large mechanical vibration;
- Parameter Pn500, Pn310, Pn311 set the Jog speed, acceleration and deceleration time; default Jog speed is 500rpm

Function code	Parameter name	Range	defaults	unit	Communication address	When enabled			
Pn500	Jog speed	0~1000	500	rpm	0x0500	Immediately			
Pn310	Speed command trapezoidal acceleration time	0~1000 0	0	ms	0x0310	Immediately			
	Acceleration of the set speed from 0r/min to the rated speed (corresponding to the motor model). When the given speed is greater or less than the rated speed, the actual acceleration time is calculated in proportion.								
Pn311	Speed command trapezoidal deceleration time	0~1000 0	0	ms	0x0311	Immediately			
	Acceleration time of the set speed from 0r/min to the rated speed (corresponding to the motor model). When the given speed is greater or less than the rated speed, the actual acceleration time is calculated in proportion.								

The overtravel prevention function is invalid during JOG operation. When running, the operating range of the machine used must be considered.

7.6.2 Operating Procedure

7.7 Program JOG Operation (Fn006)


7.7. Profile

Program JOG operation is a function that continuously runs with the previously set operation mode, movement distance, movement speed, acceleration/deceleration time, waiting time, and number of movements. This function is the same as JOG operation (Fn005). When the setting is not connected to the host device, the operation of the servo motor can be confirmed and a simple positioning operation can be performed.

- 1. Program JOG operation is position control, gear ratio and position command filtering
- are valid, but pulse instructions cannot be input to the servo unit.
- 2. The overtravel prevention function takes effect.

7.7.2 Operating Procedure

7.8 Automatic Adjustment of Instruction Offset (Fn100)

7.8.1 Profile

The automatic adjustment command offset is a method of automatically adjusting the command voltage after measuring the offset amount.

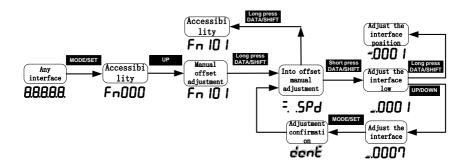

The measured offset will be stored in the servo unit.

- 1, the servo is OFF
- 2. Offset adjustment overrange or input voltage instruction during offset adjustment may fail to adjust

7.8.2 Operating Procedure

Turn off the servo drive and input the 0V command voltage from the host device or external circuit.

7.9 Speed command Offset Manual Adjustment (Fn101)


7.9.1 Profile

Directly input the instruction offset to adjust.

Manual adjustments are used for the following occasions:

- The host device has built a position loop and sets the position deviation when the servo lock stops to zero.
- When you need to set an offset
- When confirming the offset amount set by automatic adjustment

7.9.2 Operating

7. 10 Profile Torque command Offset Manual Adjustment (Fn102)

7.10.1 **Summary**

It is a method of directly inputting the torque command offset.

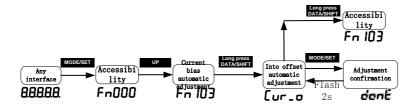
Manual adjustments are used for the following occasions:

- When you need to set an offset
- When confirming the offset amount set by automatic adjustment

7.10.2 Operating Procedure

7. 11 Current Offset Automatic Adjustment (Fn103)

126


7.11.1 **Profile**

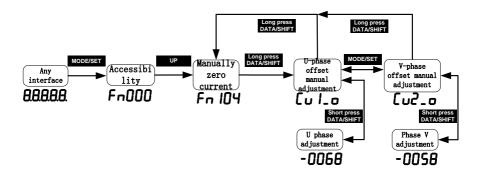
This function is only used when it is necessary to further reduce the torque ripple and other adjustments that need to be performed with higher precision, and usually does not require adjustment.

- 1. The automatic adjustment of the motor current detection signal offset must be performed with the servo off.
- 2. When the generated torque ripple is significantly larger than other servo units, perform automatic adjustment of the offset.

7.11.2 Operating Procedure

7. 12 Current Offset Manual Adjustment (Fn104)

7.12.1 **Profile**


This function is used only when the torque ripple is still large after the motor current detection signal offset auto tuning (Fn103) is executed.

When performing manual adjustments, if this function is accidentally performed, the characteristics may be degraded. When making manual adjustments, observe the following precautions.

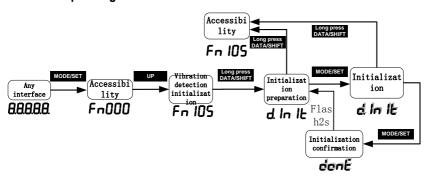
- Make the servo motor speed about 100min-1.
- Observe the torque command in the analog monitor state and adjust the pulsation to the minimum.
 The U-phase current and V-phase current offset of the servo motor must be adjusted in a balanced manner.
 Please repeat the adjustment several times.

7.12.2 Operating Procedure

7. 13 Initializing the Detection Value of Vibration Detection (Fn105)

7.13.1 **Profile**

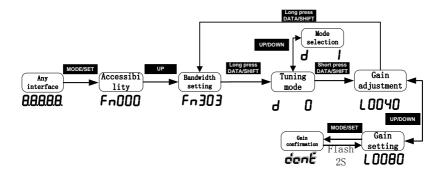
The vibration detection function can detect the vibration in the feedback speed of the servo motor. This function is used to detect the "vibration warning (Er. 520)" and "vibration warning (AL. 911)" that is more accurately after detecting the machine vibration in the running state.", and the function also could be used to automatically set the vibration detection value (Pn187).


Related parameters:

Function code	Parameter name	Range	defaults	unit	Communication address	When enabled		
	Vibration detection options	0x00~0x02	0	-	0x0185	Immediately		
Pn185	This function can automatically detect the value related alarms or warnings in order to detect the machine vibration under normal operating conditions. The perform way after setting the vibration detection: 0-No vibration detected 1-warning after vibration is detected 2-Alarming after vibration is detected							
	Vibration detection sensitivity	50~500	100	%	0x0186	Immediately		
Pn186	Set the constituity of the detected vibration. The smaller the setting value is the more constitue it is. If							
	Vibration detection value	0~5000	50	rpm	0x0187	Immediately		
Pn187	Set the threshold for vibration detection. The smaller the setting is, the easier it is to detect the vibration. If the setting is too small, the vibration may be detected by mistake during normal operation. Note: The vibration detection values of vibration alarm and vibration warnings may differ according to the condition of the used machine.							

- When the servo gain is set incorrectly, it may be difficult to detect the vibration. And it
 may not be possible to detect all the vibrations that have occurred.
 When you set the improper moment of inertia ratio (Pn100), vibration alarms and vibration alarms may be
 detected by mistake or not detected.
- This operation is performed when the motor is operated with actually used instructions.
- . When performing this action, make sure that the motor runs at a maximum speed of 10% or more.

7.13.2 Operating Procedure



7. 14 Bandwidth Settings (Fn303)

7.14.1 Summary

For detailed description of this function, see "6.5 Bandwidth Settings."

7.14.2 OperatingProcedure

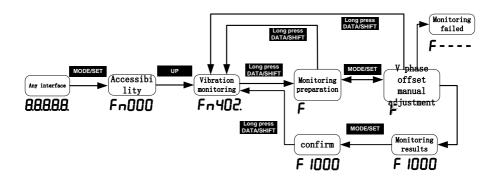
7. 15 EasyFFT (Fn401)


7.15.1 **Profile**

EasyFFT transfers the periodic waveform commands from the servo unit to the servo motor, causing the servo motor to rotate a few times for a certain period of time, causing the machine to vibrate. The servo unit detects the resonance frequency based on the vibration generated by the machine, and then sets the corresponding notch filter according to the resonance frequency. The notch filter effectively removes high-frequency vibrations and noise. If vibration occurs due to a loud sound (abnormal sound) during operation, perform this function after the servo is turned off.

- 1. It must be used in the low gain state such as the initial stage of servo adjustment. If you perform the EasyFFT function after setting a high gain, accept due to mechanical characteristics and gain balance, the machine may vibrate.
- 2. The detected resonance frequency can be automatically set to the notch filter 1/2. If 1 has been set, it will be automatically set to 2. If 1/2 is set, the notch filter cannot be set by this operation.
- When changing the amplitude setting value, gradually increase the amplitude value and change it while observing the situation.

7.15.2 Operating Procedure


7. 16 Online Vibration Monitoring (Fn402)

7.16.1 Overview

When the servo is ON and vibration occurs during operation, this operation can set the notch filter 1 or the torque command filter according to the vibration frequency, sometimes eliminating the vibration. The vibration frequency of the noise generated by the mechanical resonance or the like is detected, and the frequency of the large-peak vibration is displayed on the manipulator. For this frequency, an effective torque command filter or notch filter 1 frequency is automatically selected and related parameters are automatically set.

When using the upper computer debugging software to adjust, it is recommended to perform the smart setting or bandwidth setting. Generally, no manual operation is required. Only if the upper level debugging software is not used, it is key-assisted.

7.16.2 Operating Procedure

8 Function Code Instructions

8. 1 The principle of origin return function

The zero position is the zero value of the servo driver during operation.

The origin return process is to find the origin position of the motor on the machine according to the set origin return method. After finding the origin position, it runs to the zero position according to the set zero offset pulse, and uses the zero position as the starting position value for subsequent motor operation.

According to the above origin definition, the origin signal source can be given in three ways: limit signal, DI input signal and Z pulse. The mechanical origin signal can generally be expressed by a level signal with a certain pulse width. A high level indicates that the signal is valid, and a low level indicates that the signal is invalid. In order to accurately locate the origin signal, when selecting the origin signal source, you need to select the positive or negative rising edge of the origin signal source as the origin signal, as shown in the figure 1 below:

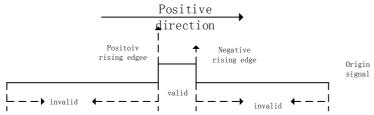


Figure 1 Origin signal source and signal edge selection diagram

During the origin return process, it is necessary to meet the origin signal multiple times to determine the correct origin. When starting the origin return, given a relatively large speed value for the origin return to ensure the speed of finding the origin, the origin signal encountered for the first time is defined as the deceleration point. After encountering the deceleration point, the origin return speed is reversed to low speed to ensure the accuracy of finding the origin. After encountering the origin signal again at low speed, it means that the origin is found. In the actual process of finding the origin, the accuracy of the origin position is affected by the speed of finding the origin at low speed. The greater the speed of finding the origin at low speed, the greater the pulse deviation along the origin signal. In order to determine the origin signal more accurately, the Z signal of the encoder can be used as the origin signal, and the Z pulse that is near the origin signal for the second time is defined as the origin signal, so that the origin position is accurate and without deviation. According to the origin signal source, origin signal edge, origin return direction, deceleration point type, Z pulse direction,

whether or not Z pulse is used, and encountering the limit, the origin return method can be classified, as shown in the following table 1:

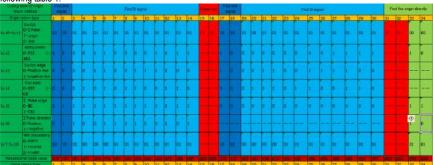


Table 1 Classification from 1 to 34 origin regression methods

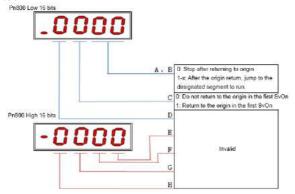
Note: the above. 1 to 34 is Species OPR embodiment according CAN open protocol CIA402 OPR to define standard definition mode, and CAN open protocol given OPR consistent manner.

8. 1. 1 Origin return trigger

The origin return trigger can automatically perform origin return via SI terminal trigger, point trigger, communication trigger and power-on.

8. 1. 2 Origin return SI terminal trigger

By configuring the universal SI terminal as the origin trigger function HomeTrig, the origin return is triggered. The rising edge of HomeTrig triggers home return. The input function definition of SI terminal related to home return is shown in Table 2.1 below:


SI Terminal Name SI Terminal Function Code		Function Description
HomeTrig	0x1C	Origin return trigger function (valid on rising edge)
HomeReach	0x1D	External input origin signal (valid at high level)

Select the SI terminal as the origin trigger signal by configuring the general SI terminal function as 0x1C. When the rising edge of this SI terminal is valid, the origin return is triggered.

Table 2.1 SI terminal input function definition

8.1.3 Return to origin automatically trigger when power on

The home position return function can be configured to automatically find the home position after the servo drive is powered on for the first time by configuring the function code Pn800. The function definition of function code Pn800 is shown in the figure below:

As shown in the figure above, section C of Pn800 is defined as automatic trigger after homing is enabled. When the C segment is set to 1, when the servo is enabled for the first time, the home position return is automatically performed. The A and B sections of Pn800 are defined as the point number for automatic operation after the origin return is completed.

8. 1. 4 Trigger home return by point function

The home position return function can be triggered by the point function. The definitions of SI terminals related to point functions are shown in Table 2.3 below:

SI Terminal Name	SI Terminal Function Code	Function Description
PosTrig	0x16	Point trigger function (valid on rising edge)
PosBit0	0x17	Point segment number selection Bit0 (valid at high level)
PosBit1	0x18	Point segment number selection Bit1 (valid at high level)
PosBit2	0x19	Point segment number selection Bit2 (valid at high level)
PosBit3	0x1A	Point segment number selection Bit3 (valid at high level)

PosBit4 0x1B	Point segment number selection Bit4 (valid at high level)
--------------	---

Table 2.3 SI terminal point function definition

As shown in the above table, the point function is triggered by the external terminal. If the point segment number selection value is 0 when triggering, the origin return operation will be triggered. That is, when the rising edge of the PosTrig signal is valid, if the point segment number selection combination value is 0 (PosBit0 to PosBit4 are all 0), the origin return operation is triggered.

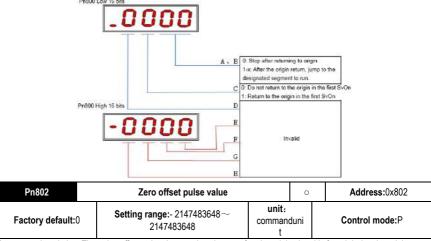
8. 1. 5 Communication triggers home return

In addition to triggering the home return operation with the SI terminal, the home return can also be triggered by communication. Through serial communication, USB communication, keyboard operation, etc., in the case of writing 0 to the function code Pn898, an origin return operation is triggered. Pn898 displays 10000 during the origin return process, and Pn898 displays 20000 after the origin return is completed.

Note: The origin return trigger is valid only when the servo drive is enabled. If the servo is not enabled, the home position return is invalid.

8. 2 Origin return function code

Pn899		Origin return method select	C)	Address:0x899		
Factory default:1		Setting range:1~34 unit:N		it:N/A		Control mode:P	
Parameter description: Origin return mode, any integer value between 1 and 34 can be set							
Pn89A	Home return high speed setting			0		Address:0x89A	
Factory default:100		Setting range:0~2000	unit:rp	unit:rpm		Control mode:P	
Parameter description:	Durir	ng the origin return process, set the	high-speed	origin s	earch	speed value.	
Pn89B Origin return low speed given			0		Address:0x89B		
Factory default:10		Setting range:0~1000	unit:rp	m		Control mode:P	

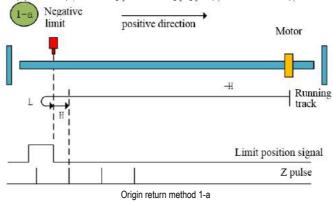

Parameter description: After the high-speed encounters the origin signal, the origin signal is searched at the low speed in the reverse direction.

Pn89C	Origin return acceleration and deceleration time given			0	Address:0x89C
Factory default:20	0	Setting range:10 \sim 1000	unit :m	s	Control mode:P

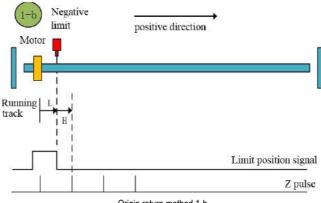
Parameter description: The acceleration and deceleration time is given during the homing process. The acceleration/deceleration time is the time from 0rpm to the rated speed as the acceleration/deceleration time of the homing.

Pn800	Return to origin control word			Address:0x800
Factory default:0	Setting range:0~0x0000FFFF	unit:N/A		Control mode:P

Parameter description: Pn800 function definition is shown in Figure 3 below

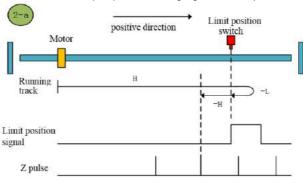


Parameter description: The pulse offset value that needs to be run after the origin signal is found during the origin return process.

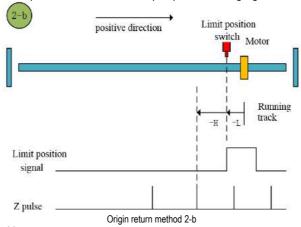

8. 3 Origin return method

Origin return method 1

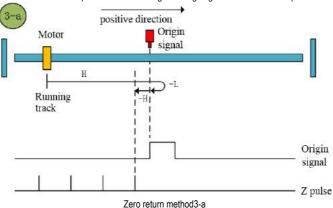
a. Start zero return \rightarrow reverse high-speed search for negative limit \rightarrow encounter the rising edge of negative limit \rightarrow decelerate to $0 \rightarrow$ positive low speed finds negative limit falling edge \rightarrow positive search for Z pulse


b. Start home return—negative limit valid—positive low speed find negative limit falling edge—positive Z pulse

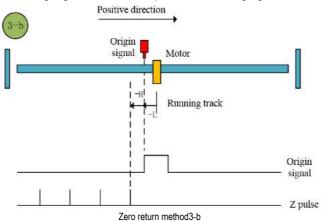
Origin return method 1-b


Zero return method 2

a. Start zero return → positive high-speed positive limit → encounter the positive limit rising edge → decelerate to 0 → reverse low speed positive limit falling edge → reverse Z pulse

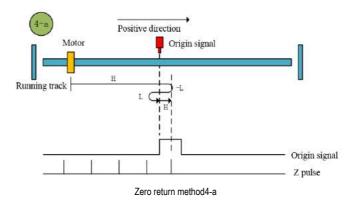

Origin return method 2-a

b. Start home return→positive limit valid→reverse low speed positive limit falling edge→reverse search Z pulse

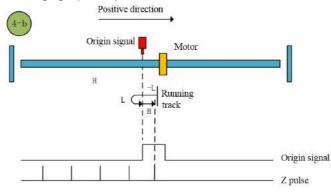


Zero return method 3

a. Start zero return—origin signal is OFF—forward high-speed home search signal rising edge—decelerate to 0—reverse low-speed home search signal falling edge—reverse search Z pulse

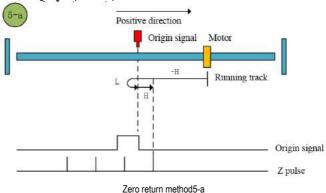


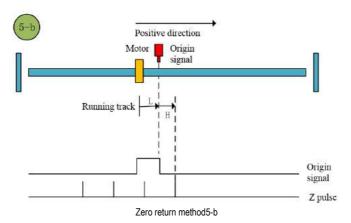
b. Start zero return→Origin signal ON→Reverse low speed home search falling edge→Reverse search Z pulse



Zero return method4

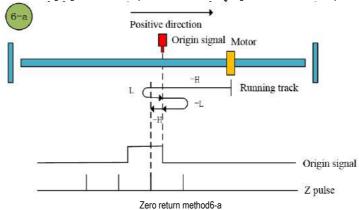
a. Start home return→origin signal OFF→forward high-speed home search rising edge→decelerate to 0→negotiate low-speed home search falling edge→decelerate to 0→forward low-speed home search rising edge→forward Z pulse search


b. Start home return—origin signal ON—reverse low-speed home search, falling edge—decelerate to 0—forward low-speed home search, rising edge—positive Z pulse search

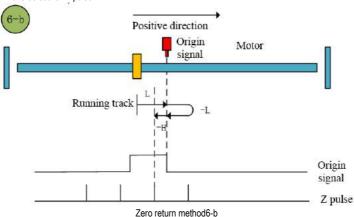

Zero return method4-b

Zero return method5

a. Start zero return→origin signal OFF→reverse high-speed home search rising edge→decelerate to 0→forward low-speed home search, falling edge→positive Z pulse search

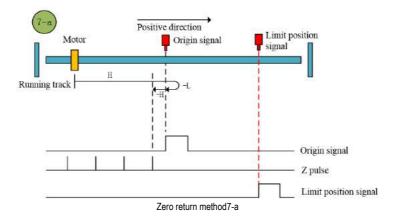


b. Start zero return→origin signal ON→forward low-speed home search, falling edge→positive Z pulse search

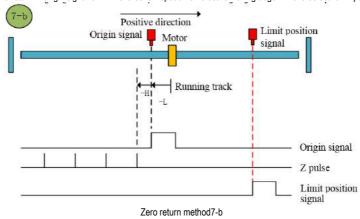


Zero return method6

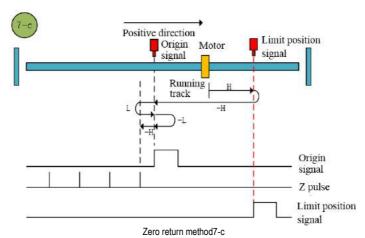
a. Start home return—origin signal OFF—reverse high-speed home search rising edge—decelerate to 0—forward low-speed home search falling edge—reverse low-speed home search rising edge—reverse search for Z pulse

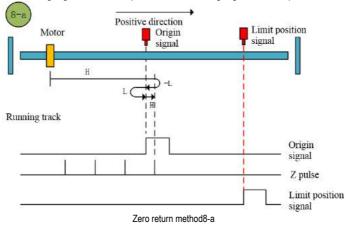


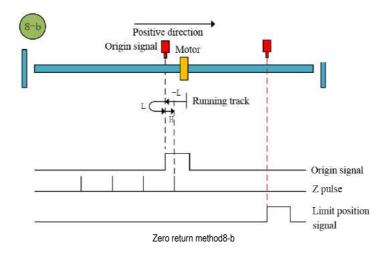
b. Start home return—origin signal ON—forward low-speed home search, falling edge—reverse low-speed home search, rising edge—reverse search Z pulse

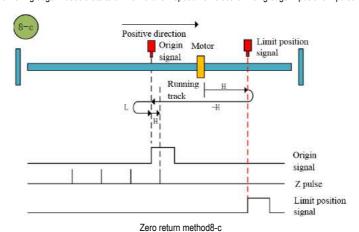


Zero return method7

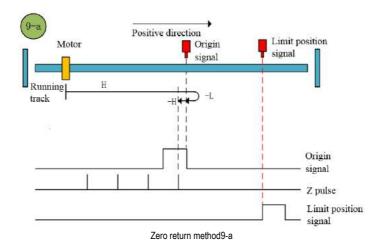

a. Start zero return→origin signal OFF→forward high-speed home search rising edge→decelerate to 0→reverse low-speed home search falling edge→reverse search Z pulse


b. Start zero return→Origin signal ON→Reverse low speed home search falling edge→Reverse search Z pulse

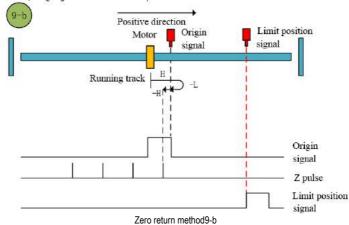

c. Start zero return—origin OFF—forward high-speed home search rising edge—positive limit—reverse high-speed home search falling edge—decelerate to 0—forward low-speed home search rising edge—reverse low-speed home search down Find Z pulse along


a. Start home return→origin signal OFF→forward high-speed home search rising edge→decelerate to 0→reverse low-speed home search falling edge→forward low-speed home search rising edge→forward Z pulse search

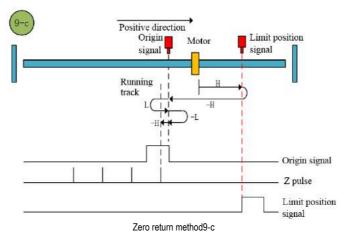
b. Start zero return→origin signal ON→reverse low-speed home search falling edge→forward low-speed home search rising edge→forward search Z pulse

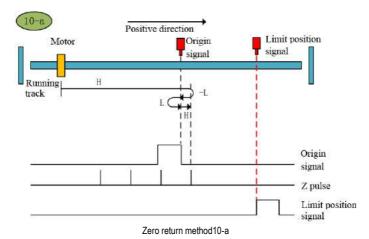


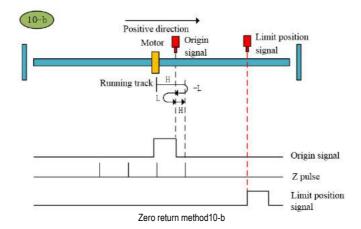
c. Start home return—origin OFF—forward high-speed home search rising edge—positive limit—reverse high-speed home search falling edge—decelerate to 0—forward low-speed home search rising edge—positive Z pulse search

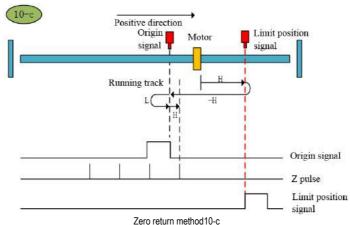


Zero return method9

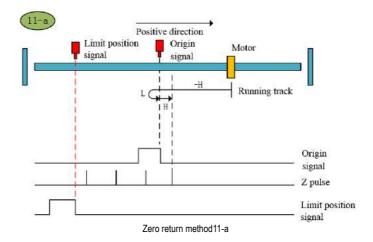

a. Start zero return→origin signal OFF→forward high-speed home search, falling edge→decelerate to 0→reverse low-speed home search, rising edge→reverse search for Z pulse


b. Start zero return→origin signal ON→forward high-speed home search, falling edge→decelerate to 0→reverse low-speed home search, rising edge→reverse search for Z pulse

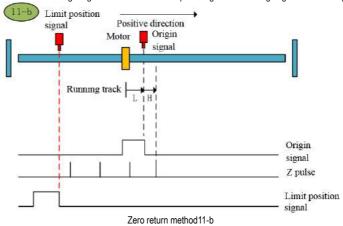

c. Start home return—origin OFF—forward high-speed home search falling edge—positive limit—reverse high-speed home search rising edge—decelerate to 0—forward low-speed home search falling edge—reverse low-speed home search rising edge → Find Z pulse in reverse direction


a. Start home return—origin signal OFF—forward high-speed home search, falling edge—decelerate to 0—reverse low-speed home search, rising edge—forward low-speed home search, falling edge—forward search Z pulse

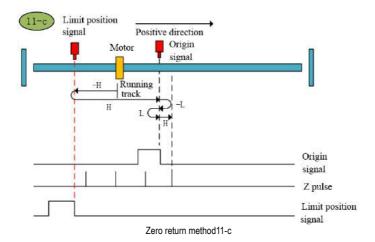
b. Start home return—origin signal ON—forward high-speed home search, falling edge—decelerate to 0—reverse low-speed home search, rising edge—forward low-speed home search, falling edge—forward search Z pulse

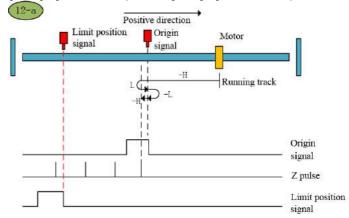


c. Start zero return—origin OFF—forward high-speed home search and falling edge—positive limit—reverse high-speed home search rising edge—decelerate to 0—forward low-speed home search, falling edge—forward Z pulse search

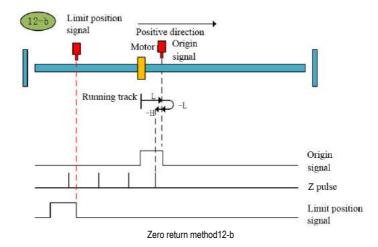


Zero return method11

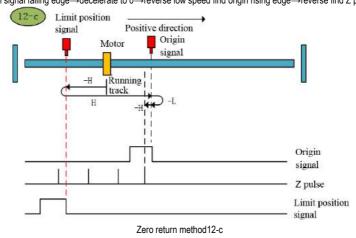

a. Origin return to start \rightarrow origin signal OFF \rightarrow reverse high-speed home search rising edge \rightarrow decelerate to 0 \rightarrow positive low speed home search falling edge \rightarrow forward Z pulse search


b. The start of zero return \rightarrow origin signal ON \rightarrow forward low-speed origin search falling edge \rightarrow forward Z pulse search

c.origin return to zero start—origin signal OFF—Reverse high speed find origin rising edge—negative limit—Forward high speed finds origin signal falling edge—decelerate to 0→Reverse low speed find origin rising edge—Forward find Z pulse

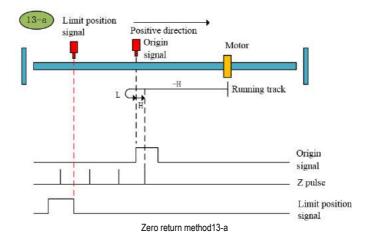


a. origin return start—origin signal OFF→Reverse high speed find origin rising edge—decelerate to 0→Forward low speed find origin falling edge—Reverse low speed find origin rising edge—Reverse find Z pulse

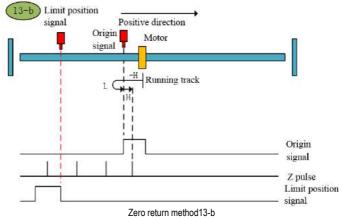


Zero return method12-a

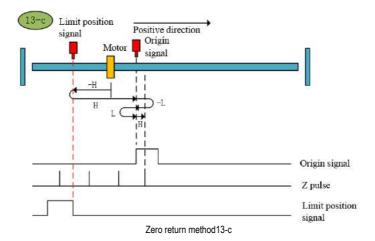
 $b.\ Origin\ return\ start \longrightarrow origin\ signal\ ON \longrightarrow Forward\ low\ speed\ find\ origin\ falling\ edge \longrightarrow Reverse\ low\ speed\ find\ origin\ rising\ edge \longrightarrow Reverse\ find\ Z\ pulse$

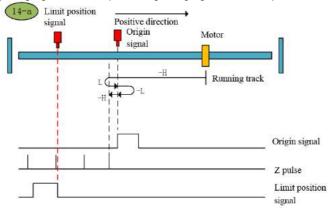


c.origin return start—origin signal OFF—reverse high speed find origin rising edge—negative limit—Forward high speed finds origin signal falling edge—decelerate to 0→reverse low speed find origin rising edge—reverse find Z pulse

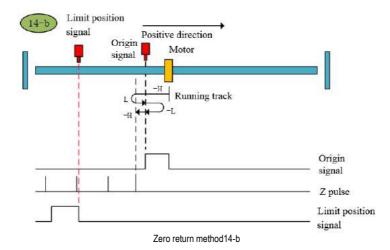


Zero return method13

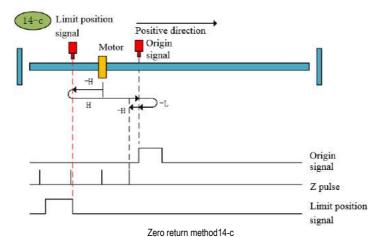

a. origin returns to zero start—origin signal OFF—reverse high speed find origin falling edge—decelerate to 0—forward low speed find origin rising edge—forward find Z pulse


b. origin returns to zero start→origin signal ON→reverse high speed find origin falling edge→decelerate to 0→forward low speed find origin rising edge→forward find Z pulse

c.origin return start—origin signal OFF—Reverse high speed finds origin signal falling edge—negative limit—Forward high speed find origin signal rising edge—decelerate to 0—Reverse low speed find origin signal falling edge—Forward low speed find origin signal rising edge →Forward find Z pulse



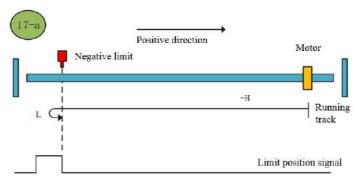
a. origin return start—origin signal OFF—reverse high speed find origin falling edge—decelerate to 0—forward low speed find origin rising edge—reverse low speed find origin falling edge—reverse find Z pulse



Zero return method14-a

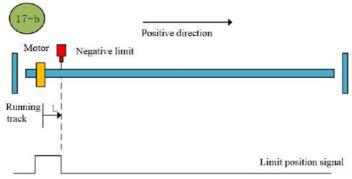
b. origin return start—origin signal ON—Reverse high speed find origin falling edge—decelerate to 0→Forward low speed find origin rising edge—Reverse low speed find origin falling edge—Reverse find Z pulse

c.origin return to zero start—origin signal OFF—reverse high speed find origin falling edge—negative limit—Forward high speed finds origin signal rising edge—decelerate to 0—reverse low speed find origin signal falling edge—reverse find Z pulse


Zero return method15:

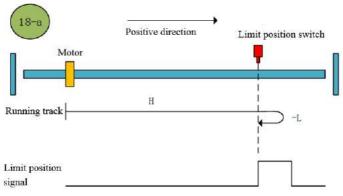
After triggering this zero return method, the servo will take the current position as the zero point and clear the servo absolute position (equivalent to the 35th origin return method specified in CIA402).

Zero return method16: Reserved.


Zero return method17

a. Start origin return→Reverse high-speed search for negative limit→touch the rising edge of negative limit→decelerate to 0→Forward low speed search for negative limit and stop after falling edge

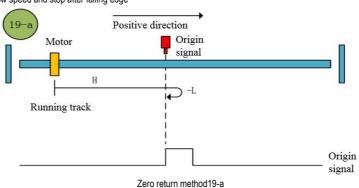
Zero return method17-a


a. Start origin return—negative limit valid—Forward low speed finds negative limit and stops after falling edge

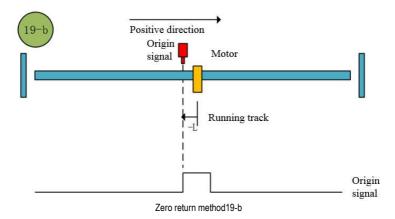
Zero return method17-b

Zero return method18

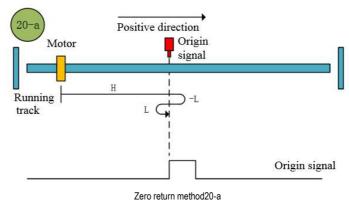
a. Start origin return→Forward high-speed positive limit position→ meet the rising edge of positive limit→decelerate to 0→Reverse low-speed positive limit position and stop after falling edge

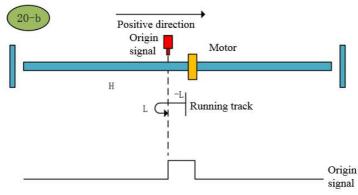

Zero return method18-a

b. Start origin return—Positive limit valid—Reverse low speed positive limit and stop after falling edge

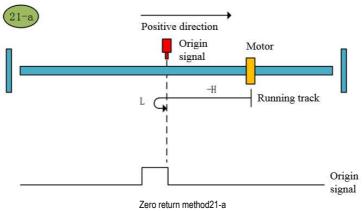


Zero return method19

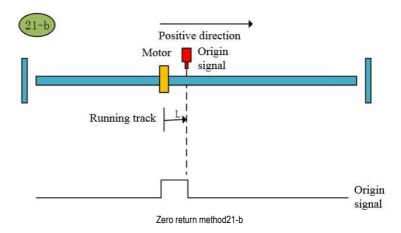

a. Start origin return→Forward find origin at high speed→reach the rising edge of origin→decelerate to 0→reverse find origin at low speed and stop after falling edge


b. Start origin return—origin effective—Reverse finds origin at low speed and then stops after falling edge

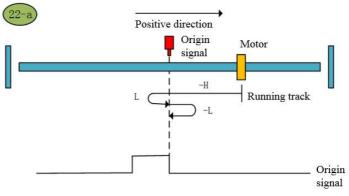
a. Start origin return—origin signal OFF—Forward high speed find origin rising edge—decelerate to 0→Reverse low speed find origin falling edge—Forward low speed find origin rising edge and then stop

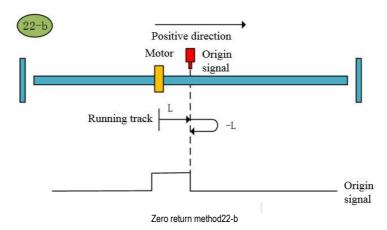


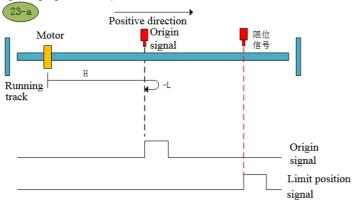
 $b. \, Start \, origin \, return \longrightarrow origin \, signal \, ON \longrightarrow Reverse \, low \, speed \, find \, origin \, falling \, edge \longrightarrow Forward \, low \, speed \, find \, origin \, rising \, edge \, and \, then \, stop$



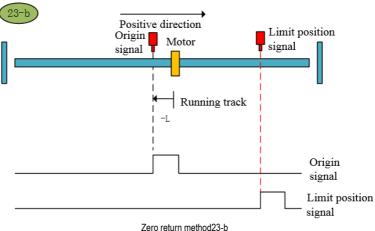
Zero return method20-b


a. Start origin return—origin signal OFF—Reverse high speed find origin rising edge—decelerate to 0—Forward low speed find origin falling edge and then stop

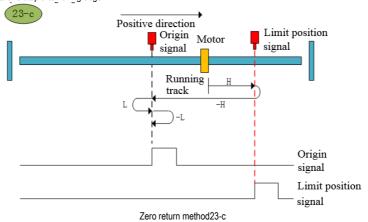

b. Start origin return—origin signal ON—Forward low-speed search for origin falling edge and then stop


a. Start origin return—origin signal OFF—Reverse high speed find origin rising edge—decelerate to 0—Forward low speed find origin falling edge—Reverse low speed find origin rising edge and then stop

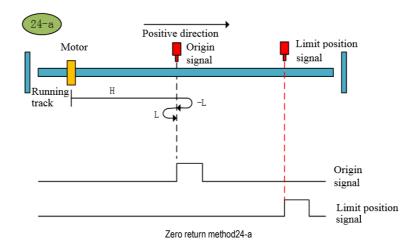
Zero return method22-a



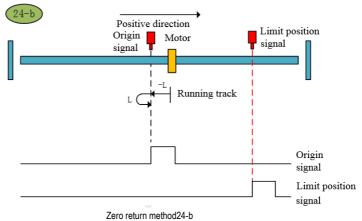
a. Start origin return \rightarrow origin signal OFF \rightarrow Forward high speed find origin rising edge \rightarrow decelerate to 0 \rightarrow reverse low speed find origin falling edge and then stop


Zero return method23-a

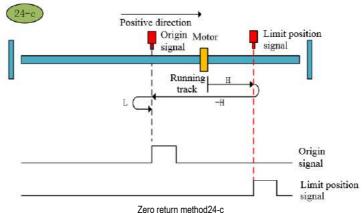
b. Start origin return—origin signal ON—Reverse finds origin at low speed and stops after falling edge


Zero return methodza-b

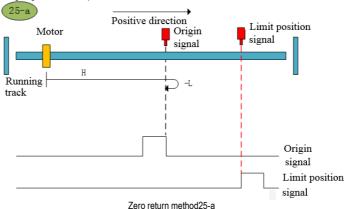
c. Start origin return—originOFF—Forward high speed find origin rising edge—touch positive limit—Reverse high speed find origin falling edge—decelerate to 0→Forward low speed find origin rising edge—Reverse low speed find origin rising edge and stop after falling edge



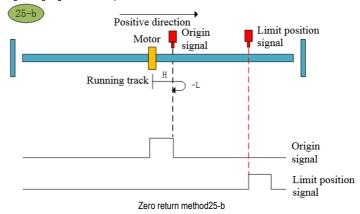
Zero return method24


a. Start origin return—origin signal OFF—Forward high speed find origin rising edge—decelerate to 0—Reverse low speed find origin falling edge—Forward low speed find origin rising edge and then stop

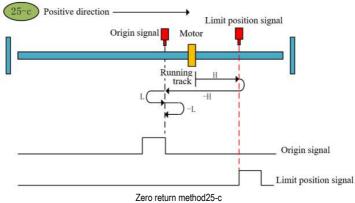
b. Start origin return—origin signal ON—Reverse low speed find origin falling edge—Forward low speed find origin rising edge and then stop

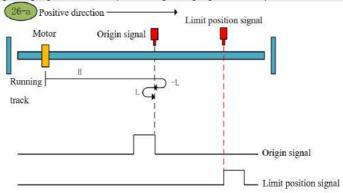


c. Start origin return—originOFF—Forward high speed find origin rising edge—touch positive limit—Reverse high speed find origin falling edge—decelerate to 0—Forward low speed find origin rising edge and then stop

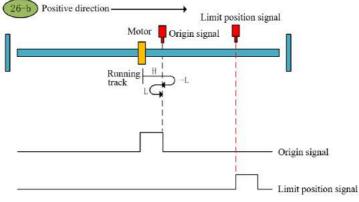


Zero return method25

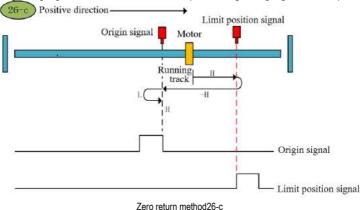

a. Start origin return—origin signal OFF—Forward high speed find origin falling edge—decelerate to 0—reverse low speed find origin rising edge and then stop


b. Start origin return→origin signal ON→Forward high speed find origin falling edge→decelerate to 0→reverse low speed find origin rising edge and then stop

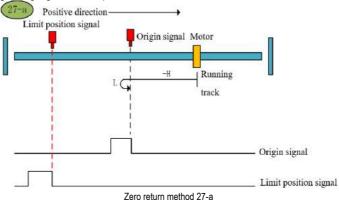
c. Start origin return—originOFF—Forward high-speed find origin falling edge— encounter positive limit—Reverse high-speed find origin rising edge—decelerate to 0—Forward low speed find origin falling edge—Reverse low speed find origin rising edge and then stop



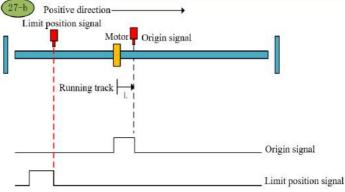
a. Start origin return—origin signal OFF—Forward high speed find origin falling edge—decelerate to 0→Reverse low speed find origin rising edge—Forward low speed find origin falling edge and then stop


Zero return method26-a

b. Start origin return→origin signal ON→Forward high speed find origin falling edge →decelerate to 0→Reverse low speed find origin rising edge→Forward low speed find origin falling edge and then stop

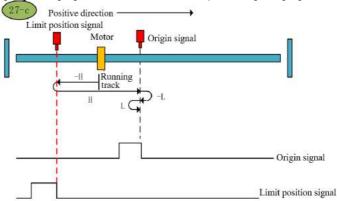

Zero return method26-b

c. Start origin return→originOFF→Forward high speed find origin falling edge→touch positive limit→Reverse high speed find origin rising edge→decelerate to 0→Forward low speed find origin falling edge and then stop



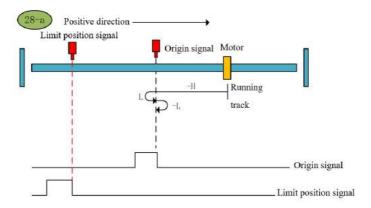
Zero return method27

a. origin return start—origin signal OFF—reverse high speed find origin rising edge—decelerate to 0—forward low speed find origin falling edge and then stop

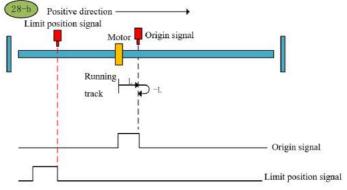


b. Origin return to start—origin signal ON—Forward low speed finds origin and stops after falling edge

Zero return method 27-b

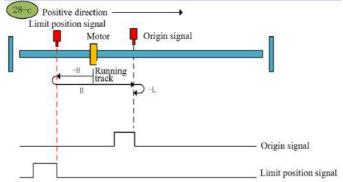

c. Origin return start→origin signal OFF→Reverse high speed find origin rising edge→negative limit→Forward high speed finds origin signal falling edge→decelerate to 0→Reverse low speed find origin rising edge and then stop

Zero return method27-c


Zero return method28

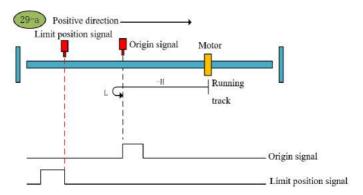
a. origin return start—origin signal OFF—Reverse high speed find origin rising edge—decelerate to 0→Forward low speed find origin falling edge—Reverse low speed find origin rising edge and then stop

Zero return method28-a

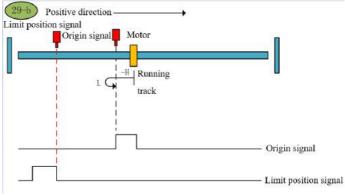

b. Origin return start—origin signal ON—Forward low speed find origin falling edge—Reverse low speed find origin rising edge and then stop

Zero return method28-b

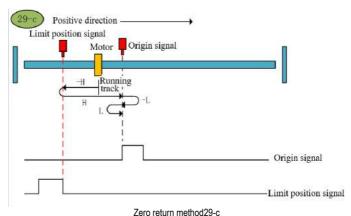
a. origin return start→origin signal OFF→reverse high speed find origin rising edge→negative limit→Forward high


speed finds origin signal falling edge → decelerate to 0 → reverse low speed find origin rising edge and then stop

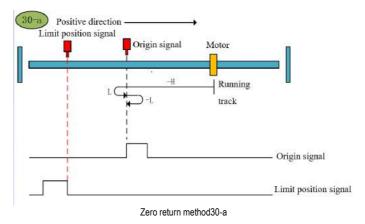
Zero return method28-c


Zero return method29 (6098 00h =29)

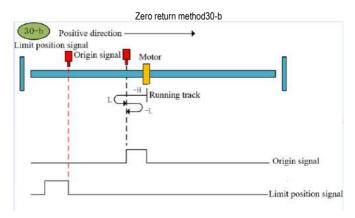
a. origin return start—origin signal OFF—reverse high speed find origin falling edge—decelerate to 0—forward low speed find origin rising edge and stop


Zero return method29-a

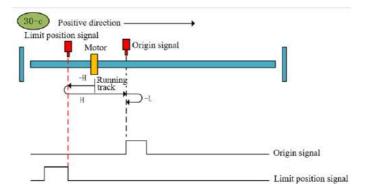
b. Origin return to start \rightarrow origin signal ON \rightarrow Reverse high speed find origin falling edge \rightarrow decelerate to 0 \rightarrow Forward low speed find origin rising edge and then stop


Zero return method29-b

a. origin return start—origin signal OFF—Reverse high speed finds origin signal falling edge—negative limit—Forward high speed find origin signal rising edge—decelerate to 0—Reverse low speed find origin signal falling edge—Forward low speed find origin signal rising edge

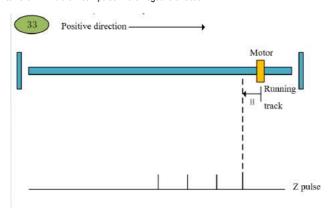


Zoro rotam motricazo o


a. origin return start—origin signal OFF—reverse high speed find origin falling edge—decelerate to 0→forward low speed find origin rising edge—reverse low speed find origin falling edge and then stop

b. Origin return start \rightarrow origin signal ON \rightarrow Reverse high speed find origin falling edge \rightarrow decelerate to 0 \rightarrow Forward low speed find origin rising edge \rightarrow Reverse low speed find origin falling edge and then stop

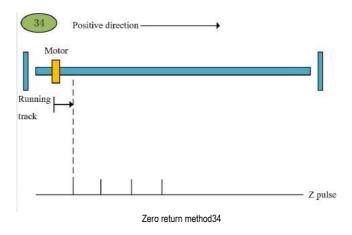
c.origin return start—origin signal OFF—Reverse high speed find origin signal falling edge—negative limit—Forward high speed find origin signal rising edge—decelerate to 0—Reverse low speed find origin signal falling edge and then stop



Zero return method30-c

Zero return method31 (6098 00h =31): Reserved. Zero return method32 (6098 00h =32): Reserved.

Zero return method33 (6098 00h =33)


Origin return to zero \rightarrow find the first Z pulse in the negative direction

Zero return method33

Zero return method34 (6098 00h =34)

Origin returns to zero \rightarrow Forward finds the first Z pulse

9 Internal location

9. 1 Internal multi-stage position control function code parameter setting

Pn000	Control mode selection	0	Address:0x000	
Factory default:0	Setting range:0x0000~0x000B	unit: N/A	Control mode:P、S、T	

Parameter description: Control mode selection. The internal multi-stage position control function is the internal position mode, and the position command is given by the parameter. Before running the internal multi-stage position control function, you first need to set the servo drive control mode to the position mode.

Pn000	function
0	Position control mode
Not 0 not 16	Other control mode
16	EtherCAT mode

Pn208	Position command source selection		0	Address:0x208
Factory default:0	Setting range:0x0000~0x0001	unit:	N/A	Control mode:P

Parameter description: internal and external position command selection. Internal multi-stage position control function is the internal position mode, so before selecting the internal multi-stage position control mode, you need to set the position command source to the internal position mode.

Pn208	function		
0	Position command source selection external pulse input		
1	Position command source selection internal position command input		

Pn204	Electronic gear ratio numerator	0	Address:0x204

Factory default:0	Setting range: 1~1073741824	unit: N/A	Control mode:P	
Parameter description: electronic gear ratio numerator. Together with the electronic gear ratio denominator, the electronic				

gear ratio of the servo drive is given.

Pn206	Electronic gear ratio denominator	0	Address:0x206
Factory default:0	Setting range:1~1073741824	unit: N/A	Control mode:P

Parameter description: electronic gear ratio denominator. The electronic gear ratio of the servo drive is given together with the numerator of the electronic gear ratio.

Note: The internal multi-stage position control mode is the internal position mode. When setting the electronic gear ratio, the electronic gear ratio cannot be set arbitrarily, otherwise it will cause data overflow and make operation errors. When selecting the internal position mode, you need to set the internal position mode. After the electronic gear ratio is set, it is necessary to ensure that the maximum number of command pulses per revolution is less than 2^20 (20-bit encoder).

9. 2 Internal multi-stage position control related function codes

Internal multi-stage position control function, according to the position command, positioning speed, acceleration time, deceleration time, delay time, Pr command type, absolute/incremental/relative position, interrupt function, overlap function, storage function to plan the position track. In addition, Position command trigger can be set by function code and DI terminal.

9. 2. 1 Position command trigger, select, stop

Position command triggering, selection, and stop can be realized in two ways. The first method uses an external numerical input terminal (DI terminal) to select, trigger, and stop the position command segment number. The second method uses a specific function code for position command Trigger, select, stop.

Position command triggering, selection, and stop can be realized through DI terminal. Position command triggering is realized by configuring POS0-POS4 function of DI terminal. SD700 allows planning 31 internal position commands. According to the combination of POS0-POS3, select the position segment to be operated. If the position segment number is selected as NUM, the corresponding relationship between POS0-POS4 and the position command segment number is:

POS4	POS3	POS2	POS1	POS0	Position segment number
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	1	0	2
0	0	0	1	1	3
0	0	1	0	0	4
0	0	1	0	1	5
0	0	1	1	0	6
0	0	1	1	1	7
0	1	0	0	0	8
0	1	0	0	1	9
0	1	0	1	0	10
0	1	0	1	1	11
0	1	1	0	0	12
0	1	1	0	1	13
0	1	1	1	0	14
0	1	1	1	1	15
1	0	0	0	0	16
1	0	0	0	1	17
1	0	0	1	0	18
1	0	0	1	1	19

1	Λ	1	Λ	Λ	20
	U		U	U	
1	0	1	0	1	21
1	0	1	1	0	22
1	0	1	1	1	23
1	1	0	0	0	24
1	1	0	0	1	25
1	1	0	1	0	26
1	1	0	1	1	27
1	1	1	0	0	28
1	1	1	0	1	29
1	1	1	1	0	30
1	1	1	1	1	31
0	0	0	0	0	

Position command triggering is achieved through the PosTrig function of the DI terminal. First select the internal position command segment number to be run through DI terminals POS0-POS3, and then use PosTrig to trigger the selected position command segment to run. The rising edge of the PosTrig signal indicates that the currently selected Position command segment operation.

Note: Trigger the point with the segment number 0 for origin return operation; the points other than 0 are normal points.

During the execution of the Pr internal position command, if you want the Pr internal position command currently being executed to stop immediately, you can stop the operation through the PosStop function of the DI terminal. Use the rising edge of PosStop to stop the currently running position command segment immediately.

The DI terminal function definitions of POS0-POS3 position command selection, PosStop position command stop, and PosTrig position command trigger are as follows:

D ''' DI (''	DIC C O I
Position DI function	DI function Code number
PosTrig	0x16
POS0	0x17
POS1	0x18
POS2	0x19
POS3	0x1A
PosStop	0x20

The position command trigger, select, and stop processing can be realized through the external DI terminal, or through the assignment of specific function codes.

When there are many position commands in the Pr, many DI input terminals are required for functions such as Prposition command segment selection, position command triggering, and position command stop via DI terminals. For convenience, add functions to the Internal multi-stage position control program Code mode for position command selection, triggering and stopping operations.

The Pr internal position command sets the function code to Pn898. According to the input value of Pn898, judge the Pr command operation that needs to be performed. The Prposition command selection, trigger and stop corresponding to the value of Pn898 are shown in the following table:

Pr898 Value	Pr command function
	Given the Pr instruction segment number, trigger the
0∼31	execution of the Prposition instruction
	Relative to Trig + PosNum
1000	Pr instruction to stop. Equivalent to given STOP bit
other	invalid

In addition to triggering the Pr instruction segment, Pn898 can also display the segment number of the current Pr instruction execution and whether the execution is complete. When reading Pn898, if the current Pn898 displays 10000+PosNum, it means that the current Pr instruction segment number is the Pr instruction of PosNum. Execute. If Pn898 displays 20000+PosNum, it means that the position command with the current Pr command segment number of PosNum has been executed, and the next Pr command can be received. The Pn898 function code definition is shown in the following table:

Pn898	Communication given Pr command se number	0	Address:0x898	
Factory default:10000	efault:10000 Setting range:0x0000~0xFFFF		N/A	Control mode:P

Parameter description: Communication setting Prposition command segment number. By setting Pn898, the desired Pr command segment can be given by communication or keyboard. If the servo is enabled, when the Pr internal position

command mode is selected, set the value of Pn898 to Between 0 and 15, the corresponding Prposition instruction segment will be executed. During the execution of the Pr internal position instruction, the value of P9.30 can be read to determine whether the currently executing position instruction segment and the current position instruction segment are executed.

If Pn898 is displayed in the format of 10000+PosNum, it means that the instruction segment with the current Pr instruction segment number PosNum is being executed.

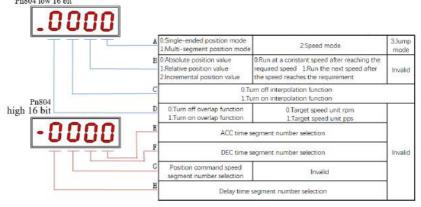
If Pn898 is displayed in the format of 2000+PosNum, it means that the current Pr instruction segment number of PosNum has been executed, and the next Prposition instruction segment can be accepted.

Note: When the servo is enabled, Pn898 will execute the point after setting the point number; when the servo is disabled, Pn898 will always display 20000 and will not perform the point operation. When Pn898=1000, it can be stopped by communication Pr instruction segment operation.

9.2.2 Position command control parameter configuration

A position command can be divided into two parts: position command control word and position command pulse number. Each position command segment is composed of the above two basic components. There are 31 position command segments defined in SD700.

Assuming the position command segment number is POSNUM, the control word of the current position command segment is given by the function code Pn804 +POSNUM*4; the current position command pulse number is given by the function code Pn806+ POSNUM*4. And so on, from the function code Pn804 A total of 15 position command segments are defined to Pn87E.

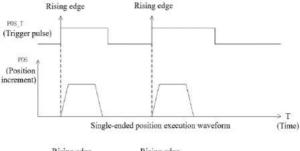

9.2.3 Definition of position command segment control word

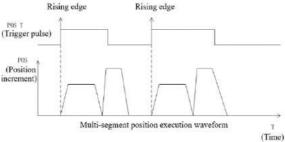
The control word of the position command section is given by Pn804. The low 16 bits define the internal multi-stage position control operation mode, and the high 16 bits define the point operation parameter selection.

Pn804	Internal multi-segment position1 control word		0	Address:0x804
Factory default:0x00000000	Setting range: 0 x00000000 \sim 0xFFFFFFF	unit:	N/A	Control mode:P

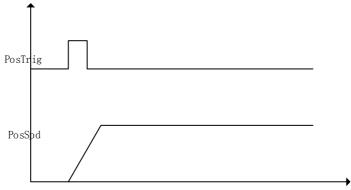
Parameter description: The low 16 bits of the internal position command control word are the internal position command trajectory planning control word. The internal position command control word can be used to plan interruption, overlap, relative/absolute, single-stage/multi-stage/speed through the low 16-bits of the internal position command control word /Jump and other functions. The high 16 bits define the speed, acceleration, deceleration, and delay time of the Preposition instruction. The function code from P9.00 to P9.27 defines the acceleration and deceleration time and positioning during the operation of the Preposition instruction Speed and delay time.

Pas04 low 16 bit




Function definition of part A of function code:

The state of the s			
Part A	function		
0	Single position mode		
1	Multi-stage position mode		
2	Speed control mode		
3	Jump mode		


Single-segment, multi-segment description: single-segment position instruction means that after executing the current position instruction, the next position instruction will not be executed. Multi-segment position instruction means that the next position instruction will continue to be executed after the current position instruction is executed. If there are several position instructions in a row in the case of multiple stages, multiple position commands will be executed

Speed mode description: If the given current position command segment is speed mode, when the position command is planned, the motor will run at the set speed until the next Pr position command starts to execute.

Speed mode diagram

Jump mode description: If the current position instruction segment jump mode, then immediately jump from the current position instruction segment to the position instruction segment of the specified segment number, and execute the position instruction of the specified segment.

Function definition of part B of function code:

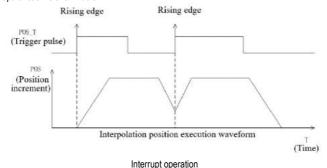
Part B	Single/multiple position mode	Speed mode	Jump mode
0	The current position command value is an absolute position value	Do not switch to the next stage Pr after the current speed is executed	
1	The current position command value is the incremental position value	Automatically execute the next Pr after the current speed is executed	_

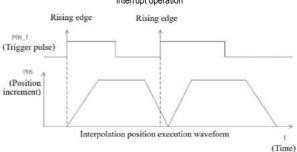
2	The current position command value is the	
	relative position value	

Description of position instruction type of part B in single/multi-segment position mode:

- Absolute position command: the motor operating target position value is the given position command value.
 TargetPos = PosAbs.
- Relative position command: the motor operating target position value is the current actual position value plus the given relative position value TargetPos = PosFdb + PosRel.
- ③ Incremental position command: the target position value of the motor operation is the previous position command value plus the current incremental position command value.
 TargetPos = PosCmd + PosInc.

Function description of part B in speed mode:


In speed mode, the B part of the control word indicates whether the next Pr command value is automatically executed after the current speed command is reached. If the B part is 1, the next Pr command value is automatically executed. The next Pr command can be single Segment and multi-segment position commands can also be speed commands or jump commands. If part B is 0, the motor will run at the speed given by the current Pr until the next Pr command starts to execute.

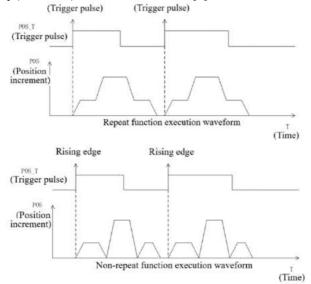

Function definition of part C of function code:

Part C	Position mode	Speed mode	Jump mode
0	Interrupt function is not enabled	Interrupt function is not enabled	Interrupt function is not enabled
1	Interrupt function enable	Interrupt function enable	Interrupt function enable

Interrupt description: When the interrupt function is enabled, regardless of whether the current position command is completed or not, immediately switch to the next position command. The margin of the current position command will be accumulated to the next position command for position command planning. If the function is interrupted Disabled, only after the current position command is completed will it switch to the next position value execution.

The interrupt function is shown below:

Uninterrupted operation


Note: The interrupt function is the setting of the Pr command in the latter stage to take effect, and the interrupt function is judged when the latter command is triggered.

Function definition of part D of function code:

Part D	Single/multiple position mode	Speed mode	Jump mode
0	Overlap function is not turned on	Target speed unit rpm	
1	Overlap function is on	Target speed unit PPS	

Position overlap description: After the overlap function is turned on, when multiple position commands are executed, when each position command is executed to the deceleration stage, it will not decelerate to 0, and the next position command will be directly planned from the current speed. If the overlap function is not turned on, the current position command After the execution is completed, slow down to 0 and then plan the next position command. The overlap function only works in multiple positions, and the single position does not work. At the same time, after the overlap function is turned on, the delay time of multiple positions becomes 0.

The multi-stage position overlap function is shown in the following figure:

Note: The setting of the previous command is effective when overlapped, and the next command is overlapped when the previous command reaches the deceleration point.

Note: In speed mode, this bit represents the speed command unit.

Speed unit description: The speed unit defines whether the speed value given in the current speed command segment is the speed value of rpm (how many revolutions per minute) or the speed value of PPS (pulses per second). Function definition of part E of function code:

Part E	Single/multiple position mode function	Speed mode	Jump mode
0	Acceleration time selection Pn880 defined time	Acceleration time selection Pn880 defined time	invalid
1	Acceleration time selection Pn881 defined time	Acceleration time selection Pn881 defined time	invalid
2	Acceleration time selection Pn882 defined time	Acceleration time selection Pn882 defined time	invalid

3	Acceleration time selection Pn883 defined time	Acceleration time selection Pn883 defined time	invalid
4	Acceleration time selection Pn884 defined time	Acceleration time selection Pn884 defined time	invalid
5	Acceleration time selection Pn885 defined time	Acceleration time selection Pn885 defined time	invalid
6	Acceleration time selection Pn886 defined time	Acceleration time selection Pn886 defined time	invalid
7	Acceleration time selection Pn887 defined time	Acceleration time selection Pn887 defined time	invalid

Function definition of part F of function code:

Part F	Single/multiple position mode function	Speed mode	Jump mode
0	Deceleration time selection Pn880 defined time	Deceleration time selection Pn880 defined time	invalid
1	Deceleration time selection Pn881 defined time	Deceleration time selection Pn881 defined time	invalid
2	Deceleration time selection Pn882 defined time	Deceleration time selection Pn882 defined time	invalid
3	Deceleration time selection Pn883 defined time	Deceleration time selection Pn883 defined time	invalid
4	Deceleration time selection Pn884 defined time	Deceleration time selection Pn884 defined time	invalid
5	Deceleration time selection Pn885 defined time	Deceleration time selection Pn885 defined time	invalid
6	Deceleration time selection Pn886 defined time	Deceleration time selection Pn886 defined time	invalid
7	Deceleration time selection Pn887 defined time	Deceleration time selection Pn887 defined time	invalid

Function definition of part G of function code:

Part G	Single/multiple position mode function	Speed mode	Jump mode
0	Speed value selection Pn888 defined value	invalid	invalid
1	Speed value selection Pn889 defined value	invalid	invalid
2	Speed value selection Pn88A defined value	invalid	invalid
3	Speed value selection Pn88B defined value	invalid	invalid
4	Speed value selection Pn88C defined value	invalid	invalid
5	Speed value selection Pn89D defined value	invalid	invalid
6	Speed value selection Pn89E defined value	invalid	invalid
7	Speed value selection Pn89F defined value	invalid	invalid

Function definition of part H of function code:

Part H	Single/multiple position mode function	Speed mode	Jump mode
0	Delay time selection Pn890 defined value	Delay time selection Pn890 defined value	invalid
1	Delay time selection Pn891 defined value	Delay time selection Pn891 defined value	invalid

2	Delay time selection Pn892 defined value	Delay time selection Pn892 defined value	invalid
3	Delay time selection Pn893 defined value	Delay time selection Pn893 defined value	invalid
4	Delay time selection Pn894 defined value	Delay time selection Pn894 defined value	invalid
5	Delay time selection Pn895 defined value	Delay time selection Pn895 defined value	invalid
6	Delay time selection Pn896 defined value	Delay time selection Pn896 defined value	invalid
7	Delay time selection Pn897 defined value	Delay time selection Pn897 defined value	invalid

9. 2. 4 Position command segment pulse reference

Assuming that the position command segment number is NUM, in single/multi-segment position mode, the number of position command pulses is given by function code Pn806+4*NUM. In speed mode, the given speed value is given by Pn804+4*NUM.

Pn806	Single/multi-segment position command pulse number Speed mode given speed value	0	Address:0x806
Factory default:	Setting range:-2^31~2^31 uni	t: r	Control mode:P

Parameter description: In single/multi-segment position mode, position command pulse number is given. In speed mode, operation target speed is given.

Note: Pay attention to the speed setting unit when setting the speed value in the speed mode, the speed unit is given by the highest bit of Pn804

9. 2. 5 Common parameters of position command section

The speed, acceleration/deceleration time, and delay time of the Prposition command are shared parameters. Each Prposition command segment can select one of 8 speeds, acceleration/deceleration time, and delay time as the operating parameters of the current position command segment. Common parameters The definition is as follows:

Pn880 Internal multi-segment position plus Deceleration time selection 0		0	Address:0x880	
Factory default:100	Setting range:0~60000	unit: N	I/A	Control mode:P

Parameter description: internal position command plus Deceleration time selection. From function code Pn900 to function code Pn907, a total of 8 sets of internal multi-segment position acceleration and deceleration time are defined. In actual use of internal multi-segment position command control, the word height can be controlled according to the internal multi-segment position command for the 16-bit part E, select a parameter from Pn900 to Pn907 as the acceleration time of the internal position command; according to the bit2 of the internal position multi-segment command control word, select a parameter from Pn900 to Pn907 as the deceleration time of the internal multi-segment position command.

Note: When several different position command segments select the same acceleration/deceleration time function code, modify the acceleration/deceleration time value of the corresponding function code, and change the acceleration/deceleration time of several position commands at the same time. The acceleration/deceleration time setting value is accelerated from 0rpm The time required to reach the rated speed of the motor.

Pn881	Internal multi-segment position pl Deceleration time selection 1	us	0	Address:0x881
Factory default:200	Setting range:0∼60000	unit: 1	ms	Control mode:P

same Pn880.

Internal multi-segment position plus Deceleration time selection 2	0	Address:0x882
--	---	---------------

				9 Internal location
Factory default:300	Setting range:0~60000	unit:	ms	Control mode:P
ame Pn880.		•		
Pn883	Internal multi-segment position pl Deceleration time selection 3	us	0	Address:0x883
Factory default:400	Setting range:0~60000	unit:	ms	Control mode:P
ame Pn880.				
Pn884	Internal multi-segment position pl Deceleration time selection 4	us	0	Address:0x884
Factory default:500	Setting range:0~60000	unit:	ms	Control mode:P
same Pn880.			•	
Pn885	Internal multi-segment position pl Deceleration time selection 5	us	0	Address:0x885
Factory default:600	Setting range:0~60000	unit:	ms	Control mode:P
same Pn880.				
Pn886	Internal multi-segment position pl Deceleration time selection 6	us	0	Address:0x886
Factory default:700	Setting range:0~60000	unit:	ms	Control mode:P
same Pn880.				
Pn887	Internal multi-segment position pl Deceleration time selection 7	us	0	Address:0x887
Factory default:800	Setting range:0~60000	unit:	ms	Control mode:P
same Pn880.			•	
Pn888	Internal multi-segment positionSpeed selection 0	value	0	Address:0x888
Factory default:100	Setting range:0∼6000	unit:	pm	Control mode:P
Pn917, a total of 8 sets of Ir multi-segment position cont	I I Internal multi-segment position comma internal multi-segment positionSpeed valurel is performed, according to the internative, select a set of parameters between Foosition operation.	ue selectior al multi-seg	n are pro ment po	ovided. When the actual internal sition control word The value of
Pn889	Internal multi-segment positionSpeed selection 1	value	0	Address:0x889
Factory default:200	Setting range:0~6000	unit:	pm	Control mode:P
ame Pn888.	I.	1		

 Pn88A
 Internal multi-segment positionSpeed value selection 2
 ○
 Address:0x88A

 Factory default:500
 Setting range:0∼6000
 unit: rpm
 Control mode:P

same Pn888.

Pn88B	Internal multi-segment positionSpeed value selection 3		0	Address:0x88B
Factory default:1000	Setting range:0∼6000	unit: rpm		Control mode:P
same Pn888.				

Pn88C Internal multi-segment positionSpeed value selection 4 ○ Address:0x88C

Factory default:1500 Setting range:0∼6000 unit: rpm Control mode:P

same Pn888

Pn88D	Internal multi-segment positionSpeed value selection 5		0	Address:0x88D
Factory default:200	Setting range:0~6000	unit: r	pm	Control mode:P

same Pn888.

Pn88E	Internal multi-segment positionSpeed value selection 6		0	Address:0x88E
Factory default:2500	Setting range:0~6000	unit: r	pm	Control mode:P

same Pn888.

Pn88F	Internal multi-segment positionSpeed value selection 7		0	Address:0x88F
Factory default:3000	Setting range:0~6000	unit: r	pm	Control mode:P

same Pn888.

Pn890	Internal multi-segment positionDelay time selection 0		0	Address:0x890
Factory default:0	Setting range:0∼6000	unit:	0.1s	Control mode:P

Parameter description: Internal multi-segment position command Delay time selection. From function code Pn890 to Pn897, a total of 8 sets of Internal multi-segment position Delay time selection are provided. When the actual internal multi-segment position control is performed, it is controlled according to the internal multi-segment position For the value of the D part of the lower 16 bits of the word, select a set of parameters between Pn890 and Pn897 as the interval time between two position commands when the Internal multi-segment position is running (unit0.1s, the delay time range is 0s ~6000s).

Note: For the position command, the delay time is the delay time after the position command pulse is sent. For the speed mode, the delay time is the delay time after the speed value reaches the set target speed.

Pn891	Internal multi-segment positionDelay time selection 1		0	Address:0x891
Factory default:1	Setting range:0~60000	unit: 0.1s		Control mode:P

same Pn890.

Pn892	ernal multi-segment positionDelay time selection 2	0	Address:0x892
-------	--	---	---------------

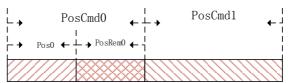
				3 IIILEITIAI IOCA
Factory default:5	Setting range:0~60000	unit:	0.1s	Control mode:P
same Pn890.			l.	
Pn893	Internal multi-segment positionDelay selection 3	time	0	Address:0x893
Factory default:10	Setting range:0~60000	unit:	0.1s	Control mode:P
same Pn890.	1	ı		
Pn894	Internal multi-segment positionDelay selection 4	time	0	Address:0x894
Factory default:100	Setting range:0~60000	unit:	0.1s	Control mode:P
same Pn890.				
Pn895	Internal multi-segment positionDelay selection 5	time	0	Address:0x895
Factory default:1000	Setting range:0~60000	unit:	0.1s	Control mode:P
same Pn890.	1	1	I	
Pn896	Internal multi-segment positionDelay selection 6	time	0	Address:0x896
Factory default:5000	Setting range:0~60000	unit:	0.1s	Control mode:P
same Pn890.		1	Į.	
Dn807	Internal multi-segment positionDelay	time		Addross:0v807

Pn897 Internal multi-segment positionDelay time selection 7 Address:0x897

Factory default:10000 Setting range:0~60000 unit: 0.1s Control mode:P

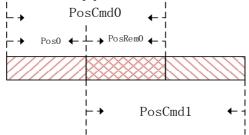
same Pn890.

9. 3 Multi-speed function operating parameters

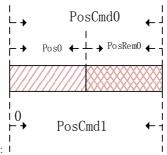

Multi-speed function Plan the corresponding position trajectory according to the set speed, acceleration and deceleration time, delay time, and target position value. Take the operating parameters of the first position command segment as an example.

9. 3. 1 Position command

In position mode, the position command pulse number of internal multi-level position control is given by Pn806 + POSNUM * 4. The position command unit is a user unit. The number of pulses per revolution of position command is given by electronic gear ratios Pn204 and Pn206.


In position mode, the target position value can be incremental position value, relative position value and absolute position value.

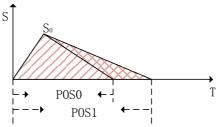
Incremental position command is mainly used for the operation mode where the target position is clear and the target position value has nothing to do with the actual position. The reference point of the incremental position is the position command value. The incremental position operation mode is shown in the figure below:


As shown in the figure above, the first position command is set to PosCmd0. After running the pulse of Pos0, the operation ends, and the pulse of the remaining PosRem0 is not completed. If the second incremental position commandPosCmd1 is inserted at this time, the second position command The total number of running pulses is PosCmd1+ PosRem0. That is, the second incremental position value PosCmd1 is based on the first position commandPosCmd0 as the reference point, and the final operating position value is PosCmd0+ PosCmd1.

The relative position command uses the actual position value as the reference point. The position command value in the next paragraph uses the actual position value at runtime to calculate the target position value. The relative position operation mode is shown in the following figure:

As shown in the figure above, the first position command is set to PosCmd0. After running the pulse of Pos0, the operation ends, and the pulse of the remaining PosRem0 is not completed. If the second position command is inserted at this time, the relative position commandPosCmd1 is inserted. The total number of pulses run by the command is PosCmd1. That is, the relative position value of the second segment PosCmd1 is the actual positionPos0 reference point, and the final operating position value is Pos0+ PosCmd1.

The absolute position command takes the absolute position value relative to the 0 point as the reference point. No matter what the current actual position value is, whether there is a pulse margin that has not been completed. The absolute position command value is the distance that needs to be traveled relative to absolute 0. As shown below Shown



As shown in the figure above, the first position command is set to PosCmd0. After running the Pos0 pulse, the operation ends, and the remaining PosRem0 pulses are not completed. If the second absolute position commandPosCmd1 is inserted at this time, the second position The total number of pulses run by the command is PosCmd1- Pos0. That is, the second absolute position value PosCmd1 is the absolute position0 reference point, and the final operating position value is PosCmd1.

9. 3. 2 Acceleration and deceleration time

During the operation of Internal multi-stage position controlfunction, the acceleration and deceleration time of the motor is calculated based on the maximum speed of the motor. For example, if the acceleration time of the motor is set to 100ms, it means that the motor is running., When accelerating from 0rpm to the maximum speed, it needs to accelerate from 0rpm to the maximum speed in 100ms.

Internal multi-stage position control function, set the maximum value of acceleration and deceleration time to 60000ms and the minimum value to 0ms. In Internal multi-stage position controlposition, if the relationship between the acceleration and deceleration time, speed and position value is not reasonable. If it is unable to run according to the set acceleration and deceleration time, the Internal multi-stage position control program will recalculate the acceleration and deceleration time according to the current speed and target position value, and run according to the re-planned acceleration and deceleration time, as shown in the figure below Shown:

As shown in the figure above, when the motor runs to S0 according to the set acceleration time, if it continues to decelerate according to the set deceleration time, the final running position value of the motor will reach the distance shown by Pos1. And in the Internal multi-stage position When planning the controlposition command, the set target position value is Pos0. In order to ensure that the final running position of the motor accurately reaches the position of Pos0, the deceleration time needs to be re-planned to ensure that the motor finally runs to the Pos0position.

9. 3. 3 Internal multi-stage position control speed and delay time

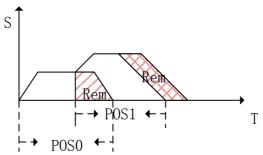
Internal multi-stage position control speed setting is divided into two types: position control mode and speed mode.

For the position mode, when the position command is planned, the desired operating speed is given by the speed selected by the G part of the upper 16 bits of the control word in the Pr command section. This speed value can only be given a positive speed value. According to the position command planning When, the positive and negative values of the target position are used to set the positive reverse of the desired speed.

For the speed mode, when Pr is running, the target speed value is given by Pn804+POSNUM*4. If you want to run in reverse in motor speed mode, you can set the value of Pn804+POSNUM*4 as a negative value. Speed is given by Pn804 The speed value unit uses the D part of the lower 16 bits of the Pr command control word to select whether the target speed is rpm or PPS as the unit.

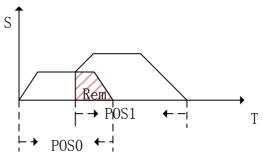
During the operation of Internal multi-stage position control, whether it is the target speed in speed mode or the desired speed in position mode, the allowable maximum speed value is 5000rpm, and when the speed exceeds 5000rpm, the speed limit is 5000rpm. When the given speed unit in speed mode is PPS, the maximum value of 5000rpm is converted into the limit of PPSunit.

For non-interrupt and non-overlapping operation, the delay time of Internal multi-stage position control is effective. After a period of Pr command is completed, how long it takes to wait before the next period of Pr command can be executed. The unit of delay time is 0.1s. For speed mode, the delay time is defined as how long it takes to delay when the motor running speed command reaches the set speed command value before it can run the next Pr command.

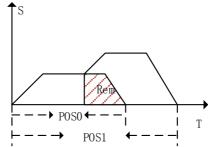

When the interrupt is running, the next Pr command will be executed immediately, so in the interrupt mode, the delay time can be interrupted. That is, when the current Pr command has not been executed, or the execution has not reached the delay time, you can use the interrupt function Execute the next Pr command immediately.

During overlapping operation, the set delay time is automatically ignored, and the next position command is planned immediately when the deceleration point is reached.

9. 4 Interrupt function


In Internal multi-stage position control function, the interrupt function can interrupt the operation of the previous position command and immediately execute the newly inserted position command. It runs according to the newly inserted position command target position. The position command is divided into incremental position, absolute position and relative There are three forms of position. Position commands that are not the same are interrupted with each other, and they have a non-same operation mode.

9. 4. 1 Incremental position interrupt position command


As shown in the figure above, the incremental position interrupts the position command operation. The first position command, the target positionPos0, is interrupted by the second position command during operation, and the remaining pulse value of the first position command is Rem. The second position command is an incremental position command, and the target position value is Pos1. After the second position command interrupts the first position command, it immediately runs at the speed set by the second position command, because the second position command is Increment position, so the total pulse value of the second position command running is the pulse value of Pos0+Pos1. It is equivalent to the first position command margin as shown in the figure, and it is transferred to the second position for execution.

9. 4. 2 Quite position command interrupted position command

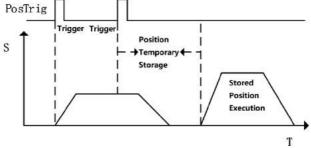
As shown in the figure above, it is relative position interrupt position operation. The first position command, target positionPos0, is interrupted by the second position command during operation, and the remaining pulse is Rem. The second position command is the relative position command, the target positionPos1. After the second position command is interrupted, it will run immediately at the target speed of the second position, and run the pulse digits relative to the actual position value. Pos1. The total pulse digits passed after the two positions are completed Pos0+Pos1-Rem That is, when the relative position is interrupted, the position margin value of the previous position is ignored, and a position is run directly on the basis of the current actual position. As shown in the figure above, the position equivalent to the Rem area is ignored.

9. 4. 3 Absolute position interrupt position command

As shown in the figure above, it is an absolute position interrupt position operation. The first position command, the target positionPos0, is interrupted by the second position command during operation, and the remaining pulse is Rem. The second position command is an absolute position command, the target positionPos1. After the second position command is interrupted, it will run immediately at the target speed of the second position, and run to the absolute positionPos1. The total number of pulses passed after the two positions are run is Pos1. That is, before the interrupt is ignored A position command value, directly according to the absolute position of the interrupt Pn864function code definition

Function definition of part A of function code:

Part A	function
0∼9	Point buffer depth

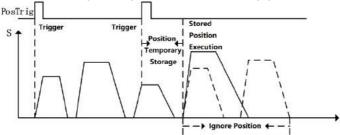

Function definition of part E of function code:

Part E	function	
0	Jog invalid	
1	Forward Jog	
2	Negative Jog	

The maximum point cache depth is 10 levels of cache. When the cache depth is set to 0, the point cache function is disabled.

Note: In the Internal multi-stage position control program, it is allowed to store up to 10 Pr command segments. The Pr command segment exceeding 10 segments will overwrite the previously stored command segment. The stored Pr command segment can be a single position command or multiple segments The first command of the position command.

During the operation of the previous Preposition command as a single position command, a new position command is triggered through the PosTirgfunction, and the newly triggered position command is temporarily stored. After the previous Pre command is completed, the stored position command is read for operation. The schematic diagram of the segment storage <u>function</u> is shown <u>bel</u>ow:

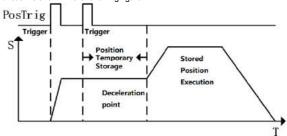

Single-segment storage diagram

186

As shown in the figure above, during the operation of a single position command, another Pr command is triggered. If the interrupt is not set for another Pr command, you need to wait for the execution of the current Pr command to complete before executing. From the second Pr command During the time between the trigger and the execution of the second Pr command, the second Pr command is temporarily stored in the position command storage huffer

9. 4. 4 multi-segment storage function

When the previous Pr command is a multi-segment Pr command, if a new position command is inserted, and the newly inserted position command is not set to interrupt, it will be temporarily stored. Waiting for the current multi-segment Pr command to be executed after the position segment is executed., Execute the stored position command segment immediately. The remaining unexecuted position command segments of multiple positions will be discarded and no longer executed. The multi-segment storage function is shown in the following figure:

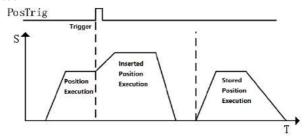


Multi-segment storage diagram

As shown in the figure above, the first position command is a multi-segment position command, and there are 5 position command segments. During operation, when the multi-segment position command is executed to the third position, a new position command value is inserted through an external trigger. Newly inserted position The command does not set the interrupt function, so after waiting for the completion of the third position command of the previous multi-segment position command series, the newly inserted position command value will be executed. The fourth and fifth position command values of the multi-segment position command series will no longer be executed.

9. 4. 5 Overlapping storage function

When the previous position command is set to overlap the function, during the operation of the position command, if a new position command is inserted through an external trigger, and the new position command does not set the interrupt function, wait for the previous position command to execute to the deceleration point position, Start to read the stored position command value, and plan the stored position command value in an overlapping manner. The overlapping storage function is shown in the following figure:

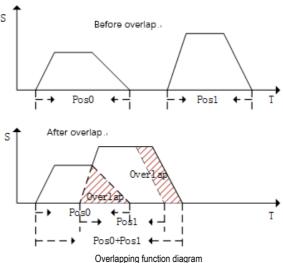


Overlapping storage diagram

As shown in the figure above, the first position command sets the overlap function, and the new position command is inserted by external trigger during operation. When the new position command is not set to interrupt, the newly received position command is temporarily stored. When the first position When the command runs to the deleration point position, it is judged that the first position command overlap function is turned on. At this time, the value of the temporarily stored position command is directly read, and the execution process of the temporarily stored position command is planned in an overlapping manner.

9. 4. 6 Interrupt storage function

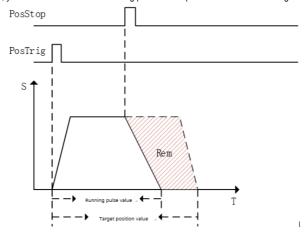
The position command storage function of Internal multi-stage position control allows storing up to 3 position command values. If there is currently a stored position command being executed, and there is still a stored position command that has not been executed, use an external trigger to insert a new one position command. The new position command sets the interrupt function, it will immediately interrupt the executing position command segment, and execute the newly inserted position command value. After waiting for the newly inserted position command value to execute, read the stored ones that have not been executed. Position command value, continue to execute. Interrupt storage function as shown below:



Interrupt storage diagram

As shown in the figure above, during the execution of the first position command, there is a stored position waiting to be executed. When the first position is executed, a new position command is inserted through an external trigger, and the newly inserted position command enables the interrupt function and executes immediately The newly inserted position command. After waiting for the newly inserted position command to complete, execute the stored position command value.

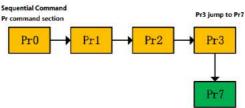
9. 5 Overlap function


When multiple positions are running continuously, you can achieve a smooth transition of multiple position commands by setting multiple position overlapping functions. The function of the overlapping function is to directly read the operating parameters of the next position when the first position runs to the position of the deceleration point position, speed, acceleration and deceleration time, etc.), directly plan the next position trajectory from the deceleration point, so as to achieve a smooth transition between the two position trajectories. The overlap function is shown in the following figure:

As shown in the figure above, when multiple positions overlap, when the deceleration point of the previous position, the operating parameters of the next position command are directly read, and the running trajectory of the next position command is planned on the basis of the current speed to realize the smoothing of the two positions Transition. In the process of overlapping operation, the remaining pulse value that is not completed in the previous position command will be compensated to run on the next position command, and there will be no pulse loss problem.

9. 6 Stop function

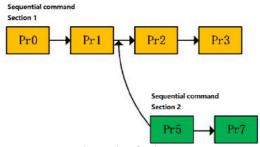
During the operation of Internal multi-stage position control, PosStop can be used to trigger the current running position command to stop. PosStop can be triggered by the rising edge of DI terminal by configuring external DI terminal 0x20; it can also be triggered by means of communication, set Pn898= In the case of 1000, PosStop function is realized. After stopping the currently running position command through the stop function, the remaining pulse value of the current position that is not running will be temporarily stored in the program. Before starting to run the next Pr command program, you need to consider the remaining pulse The stop function is shown in the figure below:


Stop function diagram

As shown in the figure above, the current running position command value is stopped by PosStopfunction during position command operation. After the stop command is triggered, the motor decelerates from the current speed to 0 according to the 500ms deceleration time. After the motor stops, the remaining pulse value of the current position Will not clear.

Before starting the next Preposition command planning, the current position command pulse needs to be processed. If you want to clear the remaining amount of the current position command pulse, you can clear the remaining pulse by sending a relative position command with a relative position of 0; if you want to change the current position The remaining pulse of the command is completed, and the remaining pulse can be run by sending an incremental position command with an incremental position of 0; if the next position command is an absolute position command. the current remaining pulse has no effect on the operation of the absolute position command.

9. 7 Jump function


In the Internal multi-stage position control program, the Pr command section allowed to be set is a jump command. When a certain section of the Pr command section is set as a jump command, when the current stage is executed, it will jump to Pr command section, immediately jump to the specified Pr command section for execution. The value of the Pr command jumped to can be a single-segment position command, the first value of a multi-segment position command, speed command, etc. During the jump process, if Jump command jump In its own situation, the jump error occurs, and the servo drive automatically stops. The schematic diagram of the jump function is shown below:

跳转示意图

As shown in the figure above, the current position command is executed in sequence. When executed to the Pr3 command segment, the Pr3 command segment jumps to the command, jumps to the Pr7 specified segment, and immediately jumps to the Pr7 command segment to execute the position defined by Pr7 command value.

Jump can be realized by sequential execution or by external trigger. Jump function can be realized by external trigger jump command segment number. Jump command can enable interrupt function, if the triggered jump function is enabled Interrupt function, interrupt the currently executing Pr command, and immediately jump to the specified Pr command section; if the triggered jump function does not enable interrupt, the triggered jump command will be temporarily stored and wait for the current Pr Jump after the execution of the specified segment is completed. The interrupt jump function diagram is shown below:

Interrupt jump function

As shown in the figure above, there are two command segments 1 and 2 that are executed sequentially. When multiple segments of command1 are currently being executed, segment 5 is specified by external trigger Pr, and segment 5 is specified by Pr as a jump command, interrupt function is enabled, and jump The target command segment number is 7. The currently running multi-segment command ends and immediately starts to execute the position command value of Pr command segment 7.

In addition to jumping to any available Pr command segment number, the jump function can also implement multisegment position command loop execution through the jump function, as shown in the following figure:

Multi-section position command loop

As shown in the figure above, when the Pr command of the last paragraph of the multi-segment position command is set, it is set as a jump command, from the last Pr command to the Pr command at the beginning of the paragraph, so that multiple Pr commands can be executed in a loop.

9. 8 Jog function

The Jog function can be Jog by communication or internal Jog operation through external terminals. The Jog function must be operated with the servo enabled. During the Jog execution process, the point function will no longer be executed. Jog execution The point can be executed normally after completion.

Pn500	Jog speed	0	Address:0x500
Factory default:500	Setting range:0~1000	unit: rpm	Control mode:P,S
Parameter description:	: Jog speed setting.unit rpm		
Pn505	Jog acceleration and deceleration time	0	Address:0x505
Factory default:100	Setting range:2~10000	unit: ms	Control mode:P,S
Parameter description:	: in Jog mode, acceleration and deceleration	on time setting.	
Pn506	Jog delay time	0	Address:0x505
Factory default:100	Setting range:0∼10000	unit: ms	Control mode:P,S

Parameter description: After the point reaches the set speed, the delay time.

9. 8. 1 Jog operation of external terminals

External terminal Jog, terminal function definition is shown in the following table:

Terminal function definition	Description
0x1E	Forward Jog
0x1F	Reverse Jog
The external terminal innut an	d log execution satisfy the following logic table:

Forward Jog 0x1E terminal status	Reverse Jog 0x1ETerminal status	Jog function password
OFF	OFF	Not executed Jog
ON	OFF	Forward Jog
OFF	ON	Reverse Jog
ON	ON	Not executed Jog

As shown in the above table, the relationship between Forward Jog and Reverse Jog is "exclusive OR". That is, if only one terminal of Reverse Jog is valid, the Jog can be executed normally.

9. 8. 2 Communication Jog

Communication Jog is realized by the high 16 bits of function code Pn89F.

	function
0	Jog invalid
1	Forward Jog
2	Reverse Jog

As shown in the above table, when the given function code Pn89F is 0, the Jog function is turned off; when the given function code is 1, Forward Jog is performed; when the given value is 2, Reverse Jog is performed.

Note: Regardless of the external terminal Jog or the communication Jog., you need to set the servo enable condition first.

function code	parameter name	range	Default	unit	Address	Effective way
---------------	----------------	-------	---------	------	---------	---------------

	Selection of the stopping method when the servo is OFF and the first type of alarm occurs	0~2	0	_	0x0004	Power off takes effect			
Pn004	0-stop the motor through DB 1- Stop the motor through DB, then release DB 2- Do not use DB, make the motor in free motion state Note: DB (Dynamic Brake) is a function for emergency stop. If the power is turned on or off or the servo motor is started or stopped by servo ON when the command is input, the DB circuit will operate frequently, which may cause aging of the internal components of the servo unit, Please input the speed command or position command to start and stop the servo motor.								
D=005	Servo occurrence type 2 alarm stop method selection	0x00~0x01	0	_	0x0005	Power off takes effect			
Pn005	0-zero speed stop: set the 1- Same as Pn004 stop me		o "0" and exe	cute a rapi	d stop				
	Overtravel warning detection option	0~1	0	_	0x0006	Power off takes effect			
Pn006	0-Do not detect overtravel v 1- Detection of overtravel w								
	Selection of stopping method when servo overtravel (OT)	0~2	0	_	0x0007	Power off takes effect			
Pn007	Set the stop mode when the servo overtravel occurs and the state after stopping: 0-Same as Pn004 stop method 1- Take the torque set by Pn053 as the maximum value, and enter the locked state after decelerating and stopping 2- Take the torque set by Pn053 as the maximum value, and enter the free running state after decelerating to stop								
Pn008	Servo lock time after electromagnetic brake is applied	0~50	0	10ms	0x0008	Effective immediately			

	When the servo motor is enabled but not running, when the brake (/BK) signal and the servo ON (/S-ON) signal are OFF when the same is OFF, setting this parameter can change the brake (/BK) signal OFF to the actual motor Time to enter no power state Note: The action delay time of the brake is slightly different. Setting this parameter can prevent the mechanical movement of the vertical axis from being caused by the weight or external force of the mechanical movement of the vertical axis when the motor is in the brake action.									
	Electromagnetic brake brake delay 10~100 50 10ms 0x0009 Effection immediately									
Pn009	When the servo motor is rotating when the servo is OFF/an alarm occurs/the main circuit is OFF, the servo motor is not energized. Through this parameter and the brake brake delay release speed (any one is satisfied), the output time of the brake signal (/BK) OFF can be adjusted Note: For the related logic, please refer to the "Holding Brake Action" Description.									
	Delay release speed of electromagnetic brake	0~10000	100	rpm	0x0010	Effective immediately				
Pn010	For details, please refe	r to the related des	scription of "E	Electromag	netic brake brak	e delay".				

10 Function Code Instructions

10. 1 Basic Control Related Pn0 Group Parameters

Control mode 0-11 0 - 0x0000 After restart	Function code	Parameter	Range	Defaul t	Unit	Communication address	When enabled	
command. The position is controlled by the number of input pulses, and the speed is controlled by the frequency of the input pulse that is used in the place where positioning action is required 1- Analog speed: The servo motor speed is controlled by the analog voltage speed command 2-Torque Mode: The output torque of the servo motor is controlled by the analog voltage torque command/internal torque command that's used to output the necessary torque (pressing action, etc.) 3-Internal speed: The speed is controlled by three internally set speeds set in the servo unit. When this control method is selected, no analog voltage is required. 4-Internal Speed <-> Analog Speed: Switch control mode via ON/OFF of switch/SPD-A and /SPD-B 5-Internal Speed <-> Position Mode: Switch control mode via ON/OFF of switch/SPD-A and /SPD-B 6-Internal Speed <-> Torque Mode: Switch control mode via ON/OFF of switch/SPD-A and /SPD-B 7-Position Mode <-> Analog Speed: ON/OFF Switching Control Mode of Switching (/C-SEL) Signal by Switching Control Mode 8-position mode <-> Analog Speed: ON/OFF Switching Control Mode of (C-SEL) signal switching 9-Torque Mode <-> Analog Speed: ON/OFF Switching Control Mode of (C-SEL) Signal Switching Mode 10- Analog speed <-> Speed mode for zero function: When controlling speed, zero fixed function can be used 11-Position Mode <-> Command Pulse Disabled Position Mode: When Control Position, Command Pulse Disable Function See the "mixed control mode selection" for detailed switching timing. Pn001 Internal enable 0-1 0-Enable OFF 1-Enable ON Motor rotation direction selection For motor end faces: 0-Counterclockwise is positive 1-Clockwise direction is positive			0~11	0	-	0x0000		
Pn001 Internal enable 0~1 0 - 0x001 y O-Enable OFF 1-Enable ON	Pn000	command. The position is controlled by the number of input pulses, and the speed is controlled by the frequency of the input pulse that is used in the place where positioning action is required 1- Analog speed: The servo motor speed is controlled by the analog voltage speed command 2-Torque Mode: The output torque of the servo motor is controlled by the analog voltage torque command/internal torque command that's used to output the necessary torque (pressing action, etc.) 3-Internal speed: The speed is controlled by three internally set speeds set in the servo unit. When this control method is selected, no analog voltage is required. 4-Internal Speed <-> Analog Speed: Switch control mode via ON/OFF of switch/SPD-A and /SPD-B 5-Internal Speed <-> Position Mode: Switch control mode via ON/OFF of switch/SPD-A and /SPD-B 6-Internal Speed <-> Torque Mode: Switch control mode via ON/OFF of switch/SPD-A and /SPD-B 7-Position Mode <-> Analog Speed: ON/OFF Switching Control Mode of Switching (/C-SEL) Signal by Switching Control Mode 8-position mode <-> torque mode: ON/OFF switching control mode of the (C-SEL) Signal switching 9-Torque Mode <-> Analog Speed: ON/OFF Switching Control Mode of (C-SEL) Signal Switching Mode 10 - Analog speed <-> Speed mode for zero function: When controlling speed, zero fixed function can be used						
Pn002 Motor rotation direction selection 0~1 0 - 0x0002 After restart	Pn001	Internal enable	0~1	0	-	0x001		
Pn002 direction 0~1 0 - 0x0002 After restart			0-E	nable OFF	1-	Enable ON		
For motor end faces: 0-Counterclockwise is positive 1- Clockwise direction is positive Default monitoring 0x0~0xfff 0xfff - 0x0003 Immediatel	Pn002	direction selection		0	-	0x0002		
Pn003 monitoring 0x0~0xfff 0xfff - 0x0003 Immediate	2	0-Counterclockwise is positive						
	Pn003	monitoring	0x0~0xfff	0xfff	-	0x0003		

	Set the monitoring parameters that are displayed by default after power-on. The setting values are detailed in the monitoring parameters. 0xfff indicates that the monitoring parameters are not displayed and the system status is displayed. Note: The alarm is displayed first when the alarm is displayed. The setting parameter cannot be displayed normally.							
	Servo OFF and stop method selection when Type 1 alarm occurs	0~2	0	-	0x0004	After restart		
Pn004	stopped by ON/OF circuit will frequentl	hrough the DB b keep the mot c Brake) is an e F power supply y operate, while execute start a	or free mergency or servo (ch may cau	stop fund ON in the use the in	e DB stion. If the servo motor is st state that the command is i ternal components of the se o motor with speed input co	nput, the DB ervo unit to		
Pn005	Second type Alarm Stop Method Selection of Servo Generation 0 - Zero speed stop 1- Same as Pn004		0 d comman	— d to "0" a	0x0005 nd perform a quick stop	After restart		
Pn006	Override Warning Checkout Selection	0~1	0	-	0x0006	After restart		
	0-No overtravel wa 1-Override warning							
	Stopping method selection at servo overtravel (OT)	0~2	0	-	0x0007	After restart		
Pn007	Set the stop mode and post-stop status when servo overtravel occurs: 0 - same as Pn004 stop method 1- Use the torque set by Pn053 as the maximum value, and enter the locked state after decelerating to stop. 2- Use the torque set by Pn053 as the maximum value, enter the free running state after decelerating to stop							
	Servo lock time after electromagnetic brake holding	10m s	0x0008	Immediatel y				
Pn008								

	Electromagnetic brake holding time delay	10~100	50	10m s	0x0009	Immediatel y		
Pn009	The servo motor won't be electrified when the Servo OFF/Alarm/Main circuit OFF occur dur the rotation. By setting this parameter and Pn010 (any one is met), the output timing of the brake signal (/BK) OFF can be adjusted. Note: The relevant logic is described in "Keep brake action"							
Pn010	Electromagnetic brake brake delay release speed	0~10000	100	rpm	0x0010	Immediatel y		
	See th	e description o	f "Electron	agnetic b	orake brake delay" for detail	s		
	External regenerative resistor power	0~65535	0	10W	0x0012	Immediatel y		
Pn012	set to a value that r	matches the all g differs depen	owable ca ding on the	cooling	ne regenerative resistor pow the connected external rege condition of the external reg letails	enerative		
	External regenerative resistor	0~65535	0	mΩ	0x0013	Immediatel y		
Pn013	set to the value ma Note: The minimun	tching the con regenerative erative resistor	nected externes	ernal rege of each p	ne regenerative resistor value enerative resistor. power section could be diffe ise, the internal components	rent. Please		
	Overload warning value	1~100	20	%	0x0015	After restart		
Pn015	factory overload wa Note: The overload	arning detection	n time is 20)% of the	ing detection time. For exar overload warning detection "Overload alarm"			
Pn016	Motor overload detection base current derating setting	10~100	100	%	0x0016	After restart		
111010	This parameter car which can shorten Note: This value is	the overload al	arm detect	ion time.	old for calculating the overlo	ad alarm,		
Pn030	Reserved	0~65535	0	-	0x0030	Immediatel y		
D::024	Parameter modification operation lock	0~1	0	-	0x0031	After restart		
Pn031	0-allow panel parar 1-prohibit panel pa							
Pn040	Method to use absolute encoder	0~1	0	_	0x0040	After restart		

	0 - Use an absolute encoder as an absolute encoder: If the motor is an absolute multi-turn encoder, setting this parameter to 1 can use the multi-turn absolute function 1 - Use an absolute encoder as an incremental encoder: When used as an incremental encoder, the power-off position won't be recorded and warning or alarm, corresponding to multiple revolutions, won't happen either when the battery is undervoltage or the drive is deneralized.							
	Absolute encoder battery warning/warning selection	0~1	0	_	0x0041	After restart		
Pn041	O- Set the low battery voltage as a fault: The driver powers up/resets for 4~9 seconds to monitor the battery status. Undervoltage will be reported as an under voltage alarm (Er. 830 Over time will not be detected. 1- Set the low battery voltage as a warning: Undervoltage (below 3V) will be reported as an under voltage alarm (Al.930). It will always monitor the battery voltage and can be self-recovery meanwhile enable running is out of restriction							
	Fully closed loop application related switches	0-51	1	-	0X0045	After restart		
	0: Encoder pulse	frequency divi			ting ruler power is valid, and	the grating		
		'	1	ruler is va filtered	alid, and the grating ruler si	•		
					, the power supply of the g	rating ruler is		
		invalid, and the grating ruler signal is not filtered 3: Rush output, the power of the grating ruler is invalid, and the grating ruler signal is not						
	filtered							
Pn044	4: The pulse frequency division output of the device, the power supply of the grating ruler is effective, 0~4MHZ filtering							
111044	16: The grating ruler pulse output, the grating ruler power supply is valid, 0~4MHZ filtering							
		frequency div	ision outpu	ıt, gratinç	g ruler power supply is inv	alid, 0~4MHZ		
	filtering 19: Scale pulse out	but, grating ru	ler power s	upplv is i	nvalid, 0~4MHZ filter			
	32: Coder pulse fre	quency output	, grating ru	ler power	r supply is valid, 0~1MHZ fil			
	power supply is val			s valid, 0~	-1MHZ filter/[49] scale pulse	e output, scale		
	34: Coder pulse fre	quency output	, grating ru		r is invalid, 0~1MHZ filter			
					is invalid, 0~1MHZ filter is valid, 0~500KHZ filtering	•		
					er is invalid, 0~500KHZ lillering			
	ruler pulse output,	grating ruler po	wer is inva	lid, 0~50	0KHZ filter			
	Undervoltage function	0x00~0x0	0	_	0x0045	After		
	selection	2				restart		
Pn045	0 – No Detection of Mai							
					que limit. The relevant torqu	e limit is		
					n circuit undervoltage torqu			
	Torque limit							
	when main circuit voltage	0~100	50	%	0x0046	Immediatel y		
Pn046	drops					,		
	According to the ur details, see the "To				the torque limit inside the s	servo unit. For		
Pn047	Torque limit release time	0~1000	100	ms	0x0047	Immediatel y		
	•				•			

-						
	when main circuit voltage drops					
	After the under-volt				orque limit value is controll Under-voltage limit of the r	
	Torque limit setting 0 - Analog torque (0~3	1	-	0x0050	Immediatel y
Pn050	1- maximum torque 2- maximum Forwa	e limit is 1 ard torque limit e limit is 1 wher	is 1 and m		Reverse torque limit is 2 Switching" switch is OFF w	hile Maximum
Pn051	Maximum torque limit 1	0~500	500	%	0x0051	Immediatel y
Pn052	Maximum torque limit 2	0~500	500	%	0x0052	Immediatel y
Pn053	Emergency stop torque	0~800	800	%	0x0053	Immediatel y
1 11000	The torque when so	et the motor st	op method	to decele	eration stop.	
	Panel parameter display selection	0x00~0x0 1	1	_	0x0061	After restart
Pn061	0- Only display sett 1- Show all parame		S			
	Encoder divider pulses	16~41943 04	2048	-	0x0070	After restart
Pn070	the set value of this machine and host of Note: The set value	s parameter. Pl device. e is the number oder crossover	lease set it r of A/B quapulses will	accordin adrature be limite	livided by frequency in acc g to the system specification output pulses in one turn. of d due to the resolution of the truction.	ons of the
	negate the divide frequency output	0~1	0	-	0x0072	After restart
Pn072	A/B pulse phase se 0- Don't negate the 1- Negate the pulse	pulse output:	When forw	ard, A is	ahead of B	
Pn080	Local communication address	0x00~0x7 F	1	-	0x0080	After restart
	485 communication baud rate selection	0~4	1	_	0x0081	After restart
Pn081	0-9600bps 2-38400bps 4-115200bps	1-19200bps 3-57600bps				
Pn082	485 communication	0~5	1	_	0x0082	After restart

	verification method					
	0-no parity (N,8,1) 2-odd check (O,8,1		parity (E,8 heck (N,8,2			
	4-Even Check (E,8		Check (O,	8 .2)		
Pn083	Canopen communication baud rate selection	0~6	4	-	0x0083	After restart
	Communicatio n data storage EEPROM	0x0~0xF FF	0x1	-	0x0085	Immediatel y
Pn085	Panel keyboard op 00: Modified data servo is restarted	er on, the value er on, the value eration settings will be stored i d. After connec	e of Pn085 e of Pn085 s: in Eeprom eting to the	is forced Bit0 is no after pow host com	to Bit0 to 1	connect the
					ectricity to Eeprom)	
Pn086	Communicatio n address mapping function switch	0~1	0	-	0x0086	Immediatel y
		0	: The map	oing funct	tion is off	
			ne mapping	function	is turned on	
Pn087	Mapping source address 1	0x0000 ~ 0xFFFF	0x11 0	-	0x0087	Immediatel y
Pn088	Mapping target address 1	0x0000 ~ 0xFFFF	0x41 0	-	0x0088	Immediatel y
Pn089	Mapping source address 2	0x0000 ~ 0xFFFF	0x20 1	-	0x0089	Immediatel y
Pn08A	Mapping target address 2	0x0000 ~ 0xFFFF	0x30 4	-	0x008A	Immediatel y
	Encoder alarm threshold (°C)	0~255	80	$^{\circ}$	0x008B	After repower
Pn08B	the over-temp encoders below fl detect over-temp Tamagawa encod Pn08B is written in	erature alarm valange have no berature alarm ders above 130 nto the encode	value chang encoder ov s, Pn08B w 0 (inclusive er EEPROM	ge of Niko ver-tempe vill be aut) flange r I to be ef	is fixed at 90°C, and Pn08l on encoder. 8 (inclusive) Ta erature alarm. For encoders omatically written as 0 in the must be in Pn08C In the cast fective, otherwise it will not erature alarm function)	amagawa s that cannot e program; se of bit4=1,
Pn08C	Encoder alarm detection selection	0x00~ 0x11	0x00	-	0x008C	After repower
It must be valid when Pn08C bit4=1, Pn08B is written to the encoder EEPROM, o will not be executed						, otherwise it

10. 2 Gain Related Pn1 Group

Function code	Parameter	Range	Defaul t	Unit	Communication address	When enabled	
Pn100	Rotary inertia ratio	0~20000	100	%	0x0100	Immediat ely	
	Rotary inertia ratio = load inertia of motor shaft conversion / rotor rotary inertia of servo motor *100%						
	First speed gain	1~2000	40.0	Hz	0x0101	Immediat ely	
Pn101	Determine the parameters of the speed loop loop when the response of the speed loop is range where the mechanical system does no becomes and the better the responsiveness	low, so over ot vibrate, the	shoot or vib	oration of the	speed command occ	urs. In the	
	First speed integration time constant	0.15~51 2	20.00	ms	0x0102	Immediat ely	
Pn102	In order to respond to small input, the speed factor for the servo system, when the time paramay be extended meanwhile resulting in poor	arameter is s	et too large				
	First position gain	1~2000	40.0	1/s	0x0103	Immediat ely	
Pn103	The position loop response is determined by is, the higher the responsiveness and the sh increased beyond the rigidity of the mechani rigidity of the machine must be increased.	orter the posi	tioning time	e will be. Th	e position loop gain ca	nnot be	
	First torque command filter	0~655.3 5	1.00	ms	0x0104	Immediat ely	
Pn104	Adjusting the parameters of the torque commodive. The smaller the value is, the better the machine conditions.						
	Second speed gain	1~2000	40.0	Hz	0x0105	Immediat ely	
Pn105	Determine the parameters of the speed loop loop when the response of the speed loop is range where the mechanical system does not becomes and the better the responsiveness	low, so over ot vibrate, the	shoot or vib	oration of the	speed command occ	urs. In the	
	The second speed integration time constant	0.15~51 2	20.00	ms	0x0106	Immediat ely	
Pn106	In order to respond to small input, the speed factor for the servo system, when the time part may be extended meanwhile resulting in poor	arameter is s	et too large				
	Second position gain	1~2000	40.0	1/s	0x0107	Immediat ely	
Pn107	The position loop response is determined by is, the higher the responsiveness and the sh increased beyond the rigidity of the mechani rigidity of the machine must be increased.	orter the pos	tioning time	e will be. Th	e position loop gain ca	nnot be	
Pn108	Second torque command filter	0~655.3 5	1.00	ms	0x0108	Immediat ely	

				10	i unction dode mati	20110110				
	Adjusting the parameters of the torque commodrive. The smaller the value is, the better the machine conditions.									
	Gain switching mode selection switch	0x00~0x 01	0	=	0x0110	Immediat ely				
Pn110	The gain switching function includes two methods of "manual gain switching" using an external input signal and "automatic gain switching" automatically switching. By using the gain switching function, gain can be increased and positioning time can be shortened during the positioning time. When the motor is stopped. Reduce gain and suppress vibration. 0- Manual Gain Switching of the External Input Signal (G-SEL) 1- When the automatic switching condition is met (Pn111), it automatically switches from the first gain to the second gain; otherwise, it switches back to the first gain.									
	automatic switching condition of position control gain	0x00~0x 05	0	_	0x0111	Immediat ely				
Pn111	0-positioning completion signal ON 1-Positioning completion signal OFF 2-positioning proximity signal ON 3- positioning proximity signal OFF 4- position command is 0 after filtering and p 5- position command pulse input is ON	Set the conditions for automatic gain switching: 0-positioning completion signal ON 1-Positioning completion signal OFF 2-positioning proximity signal ON 3- positioning proximity signal OFF 4- position command is 0 after filtering and pulse input is OFF								
Pn112	Gain switching transition time 1	0~65535	0	ms	0x0112	Immediat ely				
	After finish the Waiting Time from the time when the switching condition has been met, the gain of the first position loop is changed linearly to the gain of the second position loop in the transition time.									
	Gain switching transition time 2	0~65535	0	ms	0x0113	Immediat ely				
Pn113	After finish the Waiting Time from the time when the switching condition has been met, the gain of the second position loop is changed linearly to the gain of the first position loop in the transition time.									
	Gain switching wait time 1	0~65535	0	ms	0x0114	Immediat ely				
Pn114	The time from when switching condition is established from the first gain to the second gain to when the switching is actually started									
	Gain switching wait time 2	0~65535	0	ms	0x0115	Immediat ely				
Pn115	The time from when switching condition is es is actually started	The time from when switching condition is established from the second gain to the first gain to when the switching is actually started								
	Speed feedforward gain	0~100	0	%	0x0121	Immediat ely				
Pn121	The time from when switching condition is exist actually started	stablished fro	m the seco	nd gain to th	ne first gain to when	the switching				
	Speed feedforward filter time	0~64	0.00	ms	0x0122	Immediat ely				
Pn122	Speed feedforward low-pass filter time consi feedforward	tant can slow	position ov	ershoot and	I torque jump cause	d by				
Pn123	Use V-REF as speed feedforward selection	0x00~0x 01	0	_	0x0123	After restart				

	Speed feedforward is a function to shorten the external analog V-REF. 0-None 1- Use V-REF as speed feed forward input	ne positioning	time. It is	possible to s	select speed feed forw	ard via				
	Speed/position control selection (T-REF assignment)	0~1	0	_	0x0124	After restart				
Pn124	Torque feedforward is a function to shorten the positioning time. Torque feedforward can be selected by external analog T-REF. 0-None 1- Use T-REF as a torque feed forward input									
	Speed loop control method (PI/IP)	0~1	0	ı	0x0130	After restart				
Pn130	0-PI control 1-I-P control									
	Speed loop P/PI switching condition selection switch	0x00~0x 04	0	_	0x0131	Immediat ely				
Pn131	The mode switch is a function that automatically switches P control and PI control. Through setting the switching condition by this parameter and meeting the corresponding switching condition value can suppress overshoot during acceleration and deceleration and shorten the settling time. 0- Conditioned by internal torque command 1- Conditioned by speed instruction 2- Conditioned by acceleration 3- Conditioned by position deviation pulse 4-No mode switch function									
D 400	Speed loop P/PI switching condition (torque command)	0~800	200	%	0x0132	Immediat ely				
Pn132	When the torque command exceeds the torque set by this parameter, the speed loop will be switched to P control, otherwise PI control									
	Speed loop P/PI switching condition (speed command)	0~10000	0	rpm	0x0133	Immediat ely				
Pn133	When the speed command exceeds the speed set by this parameter, the speed loop will be switched to P control, otherwise PI control									
D 101	Speed loop P/PI switching conditions (acceleration)	0~30000	0	rpm/s	0x0134	Immediat ely				
Pn134	When the speed command exceeds the acceleration set by this parameter, the speed loop will be switched to P control, otherwise PI control									
Pn135	Speed loop P/PI switching conditions (position deviation)	0~10000	0	Unit	0x0135	Immediat ely				
111100	When the position deviation exceeds the value set by this parameter, the speed loop will be switched to P control, otherwise PI control									
	IF suppression control options	0x00~0x 11	0x001 0	_	0x0140	Immediat ely				
Pn140	The IF suppression control function effectively suppresses the continuous vibration of about 100 to 1000 Hz that occurs when the control gain is increased. 0x1#: Automatic setting of IF suppression frequency through intelligent setting and bandwidth setting 0x0#: Not set by intelligent setting, bandwidth setting, only manual setting 0x#1: IF suppression frequency setting is valid 0x#0: IF suppression frequency setting is invalid									
Pn142	IF suppression frequency	1~3000	100.0	Hz	0x0142	Immediat ely				
	Se	t IF vibration	frequency	value						

	IF damper attenuation gain	0~300	0	%	0x0143	Immediat ely					
Pn143	Increasing this parameter can increase the vibration suppression effect. However, if the setting is too large, the vibration may be increased. When confirming the vibration suppression effect, simultaneously gradually increase the setting value by each 10% in the range of 0% to 200%. If the vibration suppression effect is still not achieved after reaching 200%, please stop the setting and reduce the control gain appropriately.										
Pn150	Notch filter 1 automatic adjustment selection	0x00~0x 01	1	_	0x0150	Immediat ely					
111100	0 - Automatic adjustment without auxiliary fu 1- Automatic adjustment through auxiliary fu										
D 151	Notch filter 2 automatic adjustment selection	0x00~0x 01	1	_	0x0151	Immediat ely					
Pn151		O - Automatic adjustment without auxiliary functions 1- Automatic adjustment through auxiliary functions									
	Automatic trap resonance detection sensitivity	1~200	100	%	0x0152	Immediat ely					
Pn152	It's used to set the sensitivity for automatically detecting the resonant frequency. The smaller the value is set, the more sensitive it will be for resonance, the easier it is to detect vibration, and the smaller it is, the more likely it is to falsely detect the resonance frequency.										
Pn153	Notch filter 1 frequency	50~5000	5000	Hz	0x0153	Immediat ely					
	Sets the frequency of the first notch filter that suppresses resonance. When this parameter is set to 5000, the function of the notch filter is invalid. Note: Do not set the notch filter frequency close to the response frequency of the speed loop. At least this frequency should be set to more than 4 times of the speed loop gain, otherwise it may affect the overall performance of the system.										
Pn154	Notch filter 1Q value	0.5~10	0.70	-	0x0154	Immediat ely					
P11154	The Q value of the notch filter refers to the setting value of the filter frequency width related to the notch filter frequency. The width of the recess varies with the Q value of the notch filter, and the larger the Q value of the notch filter is set. The more sunk and the narrower the width of the filter frequency will be.										
	Notch filter 1 depth	0~1	0.000	-	0x0155	Immediat elv					
Pn155	The notch filter depth refers to the setting of the filter frequency depth related to the notch filter frequency. The depth of the recess varies with the depth of the notch filter. The smaller the notch filter depth value is, the deeper the depression and the higher the vibration suppression effect will be. But setting it too small will increase the vibration										
	Notch filter 2 frequency	50~5000	5000	Hz	0x0156	Immediat ely					
Pn156	function of the notch filter is invalid. Note: Do not set the notch filter frequency clo	Sets the frequency of the second notch filter that suppresses resonance. When this parameter is set to 5000, the function of the notch filter is invalid. Note: Do not set the notch filter frequency close to the response frequency of the speed loop. At least this frequency should be set to more than 4 times of the speed loop gain, otherwise it may affect the overall									
	Notch filter 2Q value	0.5~10	0.70	-	0x0157	Immediat ely					
Pn157	The Q value of the notch filter refers to the s frequency. The width of the recess varies wit notch filter is set. The more sunk and the nar	th the Q value	e of the not	ch filter, and	the larger the Q value	h filter					

	Notch filter 2 depth	0~1	0.000	-	0x0158	Immediat ely				
Pn158	The notch filter depth refers to the setting of depth of the recess varies with the depth of the smaller the notch filter depth value is, the effect will be. But setting it too small will increase.	the notch filte e deeper the	r. depressior			•				
	Disturbance compensation function selection	0x00~0x 01	0	_	0x0160	Immediat ely				
Pn160	Set disturbance compensation function switc 0- Not use 1-use	ch:								
	Disturbance observer cutoff frequency	1~1000	150.0	Hz	0x0161	Immediat ely				
Pn161	Set the disturbance compensation gain. Increasing it can increase the effect of suppressing the disturbance effect, but excessive noise will occur.									
Pn163	Disturbance compensation coefficient	0~100	0	%	0x0163	Immediat ely				
P1103	Set the disturbance compensation coefficient and the received position command or speed command, then add the disturbance torque compensation value to the torque command									
Pn165	Disturbance observer inertia correction coefficient	1~1000	100	%	0x0165	Immediat ely				
	The disturbance observer inertia is set by this parameter to adjust the identification error caused by inaccurate inertia setting. Note: When the inertia ratio is set correctly, the value is set to 100									
	Speed observer switch	0~1	0		0x0166	After restart				
Pn166	Set speed observation function switch: 0- Invalid 1- valid									
	Speed observer cutoff frequency	1~500	80	Hz	0x0167	Immediat ely				
Pn167	This parameter sets the speed observer bandwidth. Increasing the set value will increase the response speed of the speed feedback value to track the real speed. If the speed is too large, vibration and noise may occur.									
	Friction torque compensation cutoff speed	0~1000	20	rpm	0x0170	Immediat ely				
Pn170	Friction compensation function is a function that compensates for viscous friction and fixed load changes. It is adjusted according to the friction compensation coefficient. Generally, please set the friction compensation coefficient to 95% or less. If the effect is not obvious enough, please increase the friction compensation cut-off speed at a rate of 10% each within the range that does not generate vibration									
	Friction torque positive compensation coefficient	0~100	0	%/100r pm	0x0171	Immediat ely				
Pn171	The higher the setting value is, the better the more likely to vibrate. Usually we set the set			e setting val	ue is too high, the re	esponse is				
Pn172	Friction torque reverse compensation coefficient	0~100	0	%/100r pm	0x0172	Immediat ely				

	The higher the setting value is, the better the effect is. However, if the setting value is too high, the response is more likely to vibrate. Usually we set the setting value below 95%.								
	Robust control options	0x00~0x 01	1	=	0x0175	After restart			
Pn175	Robust control function means that the funct within a certain range, regardless of mechan Set the robust control function switch: 0-Invalid 1-valid					adjustment			
Pn177	Robust control tuning value	10~80	40.0	Hz	0x0177	Immediat ely			
		Set the gain-tuning value of the robust control. The larger the value is set, the faster the system responds, but system overshoot and excessive noise may occur.							
Pn178	Minimum load value of robust control	0~500	0	%	0x0178	Immediat ely			
	Set the robust control load factor. The larger the value is set, the faster the system responds, but it will be noisier. When the inertia is large, increasing the value properly could reduce overshoot.								
	Vibration detection options	0x00~0x 02	0	=	0x0185	Immediat ely			
Pn185	This function can automatically detect the value related alarms or warnings in order to detect the machine vibration under normal operating conditions. The perform way after setting the vibration detection: 0-No vibration detected 1-warning after vibration is detected 2-Alarming after vibration is detected								
	Vibration detection sensitivity	50~500	100	%	0x0186	Immediat ely			
Pn186	Set the sensitivity of the detected vibration. The smaller the setting value is, the more sensitive it is. If the setting is too small, the vibration may be detected by mistake during normal operation. Note: The detection sensitivity of the vibration alarm and vibration alarm may differ depending on the state of the machine being used.								
	Vibration detection value	0~5000	50	rpm	0x0187	Immediat ely			
Pn187	Set the threshold for vibration detection. The setting is too small, the vibration may be det Note: The vibration detection values of vibra of the used machine	ected by mist	ake during	normal ope	ration.				

10. 3 Position Related Pn2 Group Parameters

Function code	Parameter	Range	Default	Unit	Communicati on address	When enabled
Pn200	Pulse input filter selection	0~2	0	-	0x0200	After restart

	Use this parameter to select the position command filter to better suppress the interference in the command pulse									
				and pulse e filter ~1MHZ						
				pen-circuit filter filter 1~4MHZ						
	Note: Pleas	se set a reasonable			ncy, otherwise it m	ay cause poor				
			pulse immun	ity or pulse loss.						
	Pulse input form	0~6	0	-	0x0201	After restart				
Pn201			0-pulse + direct	tion positive logic V positive logic						
FIIZUI		4-4 times of quadrature encoding								
				tion negative logic negative Logic						
	Pulse input									
	direction negation	0~1	0	-	0x0202	After restart				
Pn202		Select the negation of pulse input direction:								
	0-positive polarity 1-negative polarity									
	Command			. ,						
	pulse input magnificati	1~100	1	x1倍	0x0203	Immediately				
Pn203	on									
PIIZUS		ommand pulse inpu d pulse magnificati								
	Comman		ication to 1 and th			a puise iriput				
		put pulse frequenc	y is too low. If the	value is set too lar	ge, the speed may	y not be steady.				
	Electronic gear ratio	0~107374182	64	-	0x0206	After restart				
	numerator	4			0x0207					
	Electronic gear ratio	1~107374182	1		0x0208	A ft t t				
	denominat	4	1	-	0x0209	After restart				
	or		Position mode full	closed loop is inva	alid:					
		onic gear ratio is a input command, s								
	rec	uires the motor sh	aft and the machin	ne deceleration rat	io on the load side	to be				
Pn204 Pn206	When N1/N2 (the load shaft rotates N1 times when the motor rotates N2 times), then: Electronic Gear Ratio numerator /Electronic Gear Ratio denominator = Encoder Resolution / Pulse									
	Number of Upper System 1r * Reduction Ratio N1/N2									
	When fully closed loop is valid: The electronic gear ratio is the ratio of the amount of movement of the workpiece per pulse unit input									
	by th	by the host device and the amount of movement per pulse output by the grating ruler.								
	Such as screw drive, the screw pitch is 10mm, and the grating ruler resolution is 0.5um. The upper system requires that the number of pulses for the motor to rotate 1r is 20000, that is, the									
		/alent is 0.5um/plu	se, and the mover	nent of the grating						
	Electronic	then: Electronic Gear Ratio numerator /Electronic Gear Ratio denominator = Input command movement								
	amount per pulse / The grating ruler outputs the movement amount of 1 pulse=0. $5/0$. $5=1/1$									
B 6777	Internal		-		0.0	After				
Pn208	position command	0~4	0	=	0x0208	repower				
	Johnnerra					L				

	O-position command selection external pulse input 1-position command selection internal position command 2-Tracking electronic cam 3- reserved 4-CANopen mode When using CANopen mode, Pn208 must be set to 4 (CANopen mode)								
Pn211	Position command low-pass filter time constant	0~655	0	ms	0x0211	After stop			
		eter is used to set of nmand and it can re pulse of		ical shock in the ca	ase of abrupt chan				
Pn212	Average filter time in position instruction rolling	0~1000	0	ms	0x0212	After stop			
		This parameter is used to set the time constant of the moving average filter of the corresponding position instruction. It can reduce the mechanical shock in the case of abrupt changes in the input pulse command frequency by setting this parameter.							
	Low- frequency vibration suppressio n options	0x00~0x02	0	-	0x0230	Immediately			
Pn230	This parameter is used with Pn231 as the automatic adjustment mode setting 0 - No vibration suppression 1- Additional vibration suppression function for specific frequency 2-Add vibration suppression to 2 different frequencies								
Pn231	Automatic adjustment selection in low- frequency vibration suppressio n	0x00~0x01	1	-	0x0231	Immediately			
	This parameter is set to choose if the low-frequency vibration suppression is automatically set in the intelligent settings, bandwidth settings and other auxiliary functions: 0 - Vibration suppression function won't be automatically adjusted via auxiliary functions 1- Vibration suppression function will be automatically adjusted via auxiliary functions								
Pn232	Low- frequency vibration detection sensitivity	0.1~300	40.0	%	0x0232	Immediately			
		ter is used to set to leted. The smaller	the sensitivity is se		o automatically de				
Pn235	Low- frequency	1~200	200.0	Hz	0x0235	Immediately			

	vibration suppressio n 1 frequency							
	This	parameter is used	d to set the frequer	ncy of low frequenc	cy vibration suppre	ession 1		
Pn236	Low Frequency Vibration Suppressio n 1	10~1000	100	%	0x0236	Immediately		
	Correction							
Pn237	Low- frequency vibration suppressio n 2 frequency	1~200	200.0	Hz	0x0237	Immediately		
	This parameter is used to set the frequency of low-frequency vibration suppression 2							
Pn238	Low- frequency Vibration Suppressio n 2 Correction	10~1000	100	%	0x0238	Immediately		
	This parameter is used to set the correction coefficient of low-frequency vibration suppression 2. The larger the value is set, the more obvious the suppression effect of low-frequency is, and settling it too small may cause long positioning time.							
	Model tracking control selection	0x00~0x01	0	-	0x0240	Immediately		
Pn240	Model-tracking control specifically selects the function of positioning, model tracking control selection switch is: 0- Not use model tracking control 1- Use model tracking control							
D-044	Model tracking control gain	1~2000	50.0	1/s	0x0241	Immediately		
Pn241	model tracking control gain determines the response speed of the servo system. If the model tracking control gain is increased, the responsiveness becomes faster and the positioning time becomes shorter. When the model tracking control is effective, the position response and deviation of the servo system are determined by this parameter, rather than position gain							
Pn242	Model tracking control attenuation coefficient	50~200	100.0	%	0x0242	Immediately		

	The tracking attenuation coefficient of the model decreases, and the position tuning section is easy to cause excessive overshoot. If the setting is too small, the position oscillates easily. When the setting increases, the position overshoot decreases, but when the position is too large, the position easily rebounds, causing the positioning time to change. Long, it is recommended to keep this value unchanged during normal use.							
Pn243	Model tracking control speed feedforwar d gain	0~1000	100.0	%	0x0243	Immediately		
		ward gain of the marked the marke	ily occur. If the fee					
Pn244	Model tracking control forward torque feedforwar d gain	0~1000	100.0	%	0x0244	Immediately		
	It's a forward position command and could be used when adjusting the forward response separately. When it is increased, the torque feed forward rises faster and the positioning time can be shortened appropriately.							
Pn245	Model tracking control reverse torque feedforwar d gain	0~1000	100.0	%	0x0245	Immediately		
	It's a reverse position command and could be used when adjusting the forward response separately. When it is increased, the torque feed forward rises faster and the positioning time can be shortened appropriately.							
Pn246	Second model tracking control gain	1~2000	50.0	1/s	0x0246	Immediately		
		Use	second gain whe	n model tracking is	s valid.			
Pn247	Second model tracking control attenuation coefficient	50~200	100.0	%	0x0247	Immediately		
		Use	second gain whe	n model tracking is	s valid.			
Pn249	Speed feedforwar d/torque feedforwar d selection	0x00~0x01	0	-	0x0249	Immediately		

	0-not use model tracking control and external speed and torque feed forward at the same time 1-use model tracking control and external speed and torque feed forward at the same time When using the model tracking control, the optimal feedforward will be set inside the servo, and it is not recommended to use the "speed feed forward (V-REF) input" and "torque feed forward (T-REF) input" from the upper unit at the same time. However, it can be used at the same time as needed. In this case, if the input feed forward is incorrect, it may cause overshoot and system instability.						
Pn250	The use way external encoder in full closed loop control	0~3	0	-	0x0250	After repower	
FII230	O-Do not use full closed loop function 1- Use in standard running direction 2- Use in reverse running direction When setting the motor forward, the moving direction of the grating ruler is set. If the direction is set incorrectly, it may cause an alarm for overspeed or excessive deviation between the motor and the load. You can manually move the load before running, and change this parameter to make the monitoring parameter Un007 (feedback pulse counter)) Run after the change direction is consistent with Un012 (external encoder feedback pulse counter).						
Pn252	The deviation coefficien t between the load of the motor with 1 full closed loop rotation	0~100	20	%	0x0252	Immediately	
	Set the coefficient processing of the deviation between the motor and the load after the motor runs for 1 revolution. For example, if this parameter is set to 0%, the deviation will be 1000 after 1 revolution, and the deviation will be accumulated on the basis of 1000 at the beginning of the second revolution, and set to 20%, The deviation is accumulated on the basis of 200 (1000×20%=200) at the beginning of the second run. If this value is set too large, it may not be able to detect Er.d10 normally. It needs to be set according to the allowable error of the installation between the load and the motor.						
Pn253	External grating ruler resolution	4~1048576	32768	Pulse/r	0x0253 0x0254	After repower	
	Set the motor to run for one revolution and the resolution of the external grating ruler (after 4 times the frequency).						
Pn257	Motor- load deviation is too large setting	0~10737418 24	1000	unit	0x0257 0x0258	Immediately	

	In position control, the upper device can receive the positioning approach signal before confirming the positioning completion signal to prepare for the action sequence after the positioning is completed, which can shorten the time required for the action when the positioning is completed, the command pulse number of the host device and the servo The signal is output when the difference of the motor movement amount (position deviation) is lower than the set value.								
	Position near signal width	1~107374182 4	1073741824	Command unit	0x0260 0x0261	Immediately			
Pn260	the positioning completed a	on control, the hos ng completion sign and shorten the time as the difference be motor move	al, so as to prepar e required for the p	re for the sequence cositioning to comp and pulse number	e of actions after the olete the operation of the host device	ne positioning is , The signal will			
	Positioning completion range	0~107374182 4	7	Command unit	0x0262 0x0263	Immediately			
Pn262	between the	In the position control, the servo motor positioning completion signal will be output when the difference between the command pulse number from the host device and the servo motor movement amount (position deviation) is lower than the set value that means the host device confirming positioning has been completed.							
Pn264	Maximum position deviation threshold	1~107374182 3	5242880	Command unit	0x0264 0x0265	Immediately			
	When the motor operation does not match the instruction, by setting the appropriate Pn264 (maximum position deviation threshold), an abnormal condition can be detected and the motor can be stopped.								
Pn266	Excessive position deviation warning setting	10~100	100	%	0x0266	Immediately			
	This parameter is used to set the position deviation excessive warning threshold. When the position deviation is greater than the product of the Pn264 (maximum position deviation threshold) and this parameter, an excessive position deviation warning will be generated.								
Pn267	Position Deviation Alarm Threshold when the Servo is ON	1~107374182 3	5242880	Command unit	0x0267 0x0268	Immediately			
	This parameter is used to set the threshold for excessive position deviation alarm at the moment of servo ON. When the servo is ON, if the position deviation value exceeds this setting value, an excessive servo deviation alarm will be generated when the servo is ON.								
Pn269	Position Deviation Warning Threshold when the Servo is ON	10~100	100	%	0x0269	Immediately			
	moment.	eter is used to set to When the servo is position deviation v	turned ON and th	e position deviatio	n is greater than th	ne product of			

	generated when the servo is ON.										
Pn270	speed limit value when the Servo is ON	0~10000	10000	rpm	0x0270	Immediately					
	If the servo is turned ON with the position deviation accumulated, the speed limit is executed by this parameter. When the command pulse is input in this state, the alarm Er.D02 (Excessive position deviation alarm caused by speed limit during servo ON) is displayed when the set value of Pn264 (maximum position deviation threshold) is exceeded.										
Pn272	Position deviation clear mode	0x00~0x03	0	l	0x0272	After restart					
	Set the clear mode of the switch position deviation clear signal (/CLR): 0- Cleared when level is ON 1- Cleared when the rising edge OFF->ON 2-Cleared when level is OFF 3- Cleared when the falling edge ON->OFF										
Pn273	Position deviation removal method selection	0x00~0x02	0	-	0x0273	After restart					
	Set the deviation removal method: 0- Servo OFF, Alarm and /CLR Signal Position Deviation can be cleared 1-/CLR signal position deviation can be cleared 2-Alarm and /CLR signal position deviation can be cleared Note: 1. For details on the pulse amplitude of the clear signal, refer to the description of "Deviation Clearance". 2. In the position control, the position deviation remains unchanged when the servo motor stops due to the travel limit.										
Pn274	Positioning completion signal output time	0x00~0x02	0	ı	0x0274	After restart					
	Set the deviation removal method: 0- Servo OFF, Alarm and /CLR Signal Position Deviation can be cleared 1-/CLR signal position deviation can be cleared 2-Alarm and /CLR signal position deviation can be cleared Note: 1. For details on the pulse amplitude of the clear signal, refer to the description of "Deviation Clearance". 2. In the position control, the position deviation remains unchanged when the servo motor stops due to the travel limit.										

10. 4 Speed Related Pn3 Group Parameters

Function code	Paramete r	Range	Default	Unit	Communication address	When enabled
Pn300	Analo g speed	150 ~3000	600	0.01V / Rated speed	0x0300	Immediatel y

	command									
	gain This nar	ameter is us	ed to set ser	vo motor speed	that should be equal to	analog				
	voltage value	(V-REF) re	quired for the	e speed comma	and of the rated value.	Ü				
	Caution: damage to th		y more than	-10~10V and e	exceeding this range may	cause				
	Analo	ie unver.								
	g speed	0~1	0	_	0x0301	Immediatel				
	command	•	•		0,0001	У				
Pn301	negation Set the voltage polarity of the analog speed command:									
	0-Positiv	e polarity: po	ositive voltag	ge corresponds	to positive speed commi					
	1- Nega	tive polarity:	positive volta	age correspond	ds to negative speed com	imand				
	Analo									
	g speed instructio	0~6	0.4	ms	0x0302	Immed				
	n filter	55.35	0	IIIS	0.0302	iately				
Pn302	time									
					command when one dela					
	applied to the analog speed command (V-REF) input and it does not usually need to be changed. If the set value is too large, the responsiveness may decrease. Please set this									
	parameter while confirming the response.									
	Analo g speed									
	command	0~3	0	v	0x0303	Immed				
	dead zone		·	•	- CAUCUU	iately				
Pn303	range									
	In the ar	alog speed	control, ever	if the input co	mmand is 0V, the servo	motor may				
	rotate at a slight speed. This is because there is a slight deviation in the commands inside									
	the servo unit. This error can be eliminated by setting an appropriate analog speed command deadband range.									
	Intern	0~1				Immed				
	al speed 1	0000	100	rpm	0x0304	iately				
	Intern al speed 2	0~1 0000	200	rpm	0x0305	Immed iately				
	Intern	0~1				Immed				
	al speed 3	0000	300	rpm	0x0306	iately				
Pn304 Pn305	When or	perating in th	e internal sp	eed mode, the	servo unit provides three	e internal				
Pn306			ough Switch	Internal Speed	d Command Selection A	and B we				
	could select a	as follow: /SPD-B	speed cor	mmand						
	OFF	OFF	Zero Sp							
	OFF	ON	Internal sp							
	ON ON	ON OFF	internal sp Internal Sp							
	Speed									
	command									
	trapezoid	0~1	0	ms	0x0310	Immediatel				
5 646	al accelerati	0000				У				
Pn310	on time									
					d speed (corresponding t					
	model). Whe acceleration				n the rated speed, the ac	tual				
	Speed		atou iii piop			I				
Pn311	command	0~1 0000	0	ms	0x0311	Immediatel				
	trapezoid	0000				У				

					10 1 01100011	Joue manuchons		
	al decelerati on time							
		del). When t	he given sp	eed is greater o	o the rated speed (corres or less than the rated spe			
	Zero speed clamp mode	0~3	3	-	0x0312	Immed iately		
Pn312	Speed mode, setting the switching speed zero clamp signal (/ZCLAMP) working mode: 0-Invalid 1-speed command is set to 0, not clamped after shutdown 2-speed command is set to 0, clamped after shutdown 3-speed command is lower than "zero speed clamp speed threshold"(Pn313), the first speed command is set to 0, clamped after shutdown							
Pn313	Zero Speed Clamp Speed Threshold	0~1 0000	10	rpm	0x0313	Immed iately		
	Set the a	zero control s	switching thr	eshold when "z	zero speed clamp mode"(Pn312) is		
Pn317	Rotati on determina tion threshold	1~1 0000	20	rpm	0x0317	Immed iately		
	When th (/TGON) is o		ed is higher		lue, the switch rotation de	etection signal		
Pn320	Spee d consisten t range	0~1 00	10	rpm	0x0320	Immed iately		
					and the command speed P) would be output.	is lower than		

10. 5 Torque Related Pn4 Group Parameters

Functio n code	Para meter	Rang e	De fault	Unit	Communicati on address	When enabled
Pn400	Torq ue comman d selection	0~1	1	1	0x0400	Immed iately
F11400	0-Intern	the torque con nal settings og input				
Pn401	Torq ue comman d second- order low-pass filter cut- off	100~ 5000	50 00	Hz	0x0401	Immed iately

	frequenc							
	У							
		rameter is use arameter is se			I ency of the second-order on is invalid.	torque filter.		
Pn402	Torq ue comman d second- order low-pass filter Q	0.5~1	0.5	1	0x0402	Immed iately		
	Increasing t		n improve th		e second-order torque fi ponse, but noise will be			
	Torq ue comman d direction setting	0~1	0	-	0x0403	Immed iately		
Pn403	Set the switching torque command direction selection (/T-SIGN) signal to activate the switch: 0 - Torque command direction selection (/T-SIGN) signal is invalid 1- Torque command direction selection (/T-SIGN) signal is valid Note: Torque command is invalid when /T-SIGN is valid, torque command is positive when /T-SIGN signal is ON, and torque command is negative when /T-SIGN signal is OFF.							
Pn404	Anal og torque comman d filter time	0~65 5.35	0.0 0	ms	0x0404	Immed iately		
	The parameter is used to smooth the torque command when we apply a delay filter to the analog torque command (T-REF) input, usually it does not need to be changed. If the set value is too large, the responsiveness may decrease. So please set it up as we check the response.							
Pn405	Anal og torque comman d gain	10~1 00	30	0.1V/ rated torq ue	0x0405	Immed iately		
	This parameter is used to set the analog voltage value (T-REF) required for the rated torque of the servo motor. Caution: Do not apply more than -10~10V, exceeding this range may cause damage to the driver.							
Pn 400	Anal og torque comman d negation	0~1	0	-	0x0406	Immed iately		
Pn406	The an	ve polarity: Po	sitivė voltag	je correspond	setting of the torque con is to positive torque com ds to negative torque co	mand		
Pn407	Anal og torque comman	0~3	0	V	0x0407	Immed iately		

	d dead							
	zone range							
		na torque cont	rol. even if t	he input comm	nand is 0V, the servo m	otor may		
					viation occurs in the com			
				nated by settir	ng an appropriate analog	g torque		
	command d	eadband rang	e.					
	nal							
	torque					Immed		
	comman	500~500	0	%	0x0410	iately		
Pn410	d in torque							
	control							
			for selecting	g the torque of	control is the torque com	mand size		
	setting for in	ternal setting.						
	d control							
	mode	0~1	1		0x0411	After		
	setting in	0~1	'	_	0.0411	restart		
Pn411	torque control							
		ct the lower on	e between t	he speed corr	responding to the analog	yoltage (V-		
	REF) and th	e speed set by	y Pn413	·	, ,	,		
	1-selec	t the speed se	t by Pn413					
	Spee	000				A # +		
	d limit	0x00 ~0x01	0	_	0x0412	After restart		
Pn412	selection		and (datara	inad by intarn	al part of the motor mag			
F11412		l limit (Pn411)	eea (aeterri	linea by intern	al part of the motor mod	iei) + iorque		
			on alarm sp	eed (determin	ed by internal part of the	e motor		
	model) + torque mode speed limit (Pn411)							
	Spee d limit in	0~10	10			Immed		
Dn 442	Spee d limit in torque	0~10 000	10 00	rpm	0x0413	Immed iately		
Pn413	d limit in		-	rpm	0x0413			
Pn413	d limit in torque	000	00		0x0413	iately		
Pn413	d limit in torque	000	00			iately		
Pn413	d limit in torque control	000	00			iately		
Pn413	d limit in torque control	000	00			iately		
Pn413	d limit in torque control Inte	000 This paramete	00			iately Pn411		
Pn413	d limit in torque control Inte rnal torque	000 This paramete $0 \sim$	00			iately Pn411 Immed		
Pn413	Inte	000 This paramete	00 er is used to	set speed lim	it in torque control with	iately Pn411		
	Inte rnal torque control command	000 This paramete $0 \sim$	00 er is used to	set speed lim	it in torque control with	iately Pn411 Immed		
	Inte rnal torque control command smooth acceler	000 This paramete $0 \sim$	00 er is used to	set speed lim	it in torque control with	iately Pn411 Immed		
	Inte rnal torque control command smooth	000 This paramete $0 \sim$	00 er is used to	set speed lim	it in torque control with	iately Pn411 Immed		
	Inte rnal torque control command smooth acceler ation time	This paramete $0 \sim 30000$	oo er is used to	set speed lim	oit in torque control with	iately Pn411 Immed		
	Inte rnal torque control command smooth acceler ation time	This paramete $0 \sim 30000$	oo er is used to	set speed lim	it in torque control with	iately Pn411 Immed		
	Inte rnal torque control command smooth acceler ation time Internal	This paramete $0 \sim 30000$	oo er is used to	set speed lim	oit in torque control with	iately Pn411 Immed		
	Inte rnal torque control command smooth acceler ation time Internal	This paramete $0 \sim 30000$	oo er is used to	set speed lim	oit in torque control with	iately Pn411 Immed		
	Inte rnal torque control command smooth acceler ation time Internal	This paramete $0 \sim 30000$	oo er is used to	set speed lim	oit in torque control with	iately Pn411 Immed		
	Inte rnal torque control command smooth acceler ation time Internal	This paramete $0 \sim 30000$	oo er is used to	set speed lim	oit in torque control with	Immed iately		
Pn415	Inte rnal torque control command smooth acceler ation time Internal torque	000 This paramete 0 0 \sim 30000 torque cont	oo er is used to	set speed lim	oit in torque control with	iately Pn411 Immed iately Immed		
	Inte rnal torque control command smooth acceler ation time Internal torque control command smooth acceler ation time	This paramete $0 \sim 30000$	oo er is used to	set speed lim ms nd smooth a	0x0415	Immed iately		
Pn415	Inte rnal torque control command smooth acceler ation time Internal torque control command smooth acceler ation time Internal command torque control command	000 This paramete 0 0 \sim 30000 torque cont	oo er is used to	set speed lim ms nd smooth a	0x0415	iately Pn411 Immed iately Immed		
Pn415	Inte rnal torque control command smooth acceler ation time Internal torque control command smooth acceler ation time Internal torque control command smooth	000 This paramete 0 0 \sim 30000 torque cont	oo er is used to	set speed lim ms nd smooth a	0x0415	iately Pn411 Immed iately Immed		
Pn415	Inte rnal torque control command smooth acceler ation time Internal torque control command smooth acceler ation time Internal command smooth deceler	000 This paramete 0 0 \sim 30000 torque cont	oo er is used to	set speed lim ms nd smooth a	0x0415	iately Pn411 Immed iately Immed		
Pn415	Inte rnal torque control command smooth torque control command smooth acceler ation time Internal torque control command smooth deceler ation time	This parameter $0 \sim 30000$	oo er is used to	set speed lim ms ms ms	0x0415	iately Pn411 Immed iately Immed		

	Targ et					
Pn420	torque reaches the set value	0.0 ~ 500.0	100	-	0x0420	Immed iately
		Ta	arget tor	que reaches	the set value	
Pn421	Targ et torque arrival time window	0~ 1000	5	ms	0x0422	Immed iately
			Target to	orque arrival	time window	

10. 6 Jogging Related Parameters

Functi on code	Paramet er	Rang e	D efault	Unit	Communica tion address	Whe n enabled			
Pn500	JOG speed	0~100 0	5 00	rpm	0x0500	Imm ediately			
	Program JOG operation mode	0x00~ 0x05	0	-	0x0502	lmm ediately			
Pn502	0-(waiting time->forward motion)*number of cycles 1-(waiting time->backward motion)*number of cycles 2-(waiting time->forward motion)*number of cycles->(waiting time->backward motion)*number of cycles 3-(waiting time->backward motion)*number of cycles 4-(waiting time->forward motion)*number of cycles 4-(waiting time->forward motion->waiting time->backward motion)*number of cycles 5-(waiting time->backward motion->waiting time->forward motion)*number of cycles								
Pn503	Program JOG moving distance	1~107 3741824	3 2768	Comm and unit	0x0503	Imm ediately			
	Set the JOG movement distance of the running program as the command unit								
Pn505	Program JOG acceleration/ decelerat- ion time	2~100 00	1 00	ms	0x0505	Imm ediately			
	Set the time of accelerating from 0r/min to the rated speed (corresponding to the motor model). When the set speed is greater or less than the rated speed, calculate the actual acceleration/deceleration time according to the ratio.								
Pn506	Program JOG waiting time	0~100 00	00 00	ms	0x0506	Imm ediately			
Pn505	JOG moving distance Set the JOC Program JOG acceleration/ deceleration time Set the time motor model). Vactual acceleration of the distance of the time motor modely. Vactual acceleration of the distance of the time motor modely. Vactual acceleration of the distance o	0x0505 speed (corresponding the rated speed, calco.	ediatel unit Impediatel to the ulate the						

	Set the waiting time between JOG sections of the running program in conjunction with the program JOG operation mode (Pn502)								
D., 507	Program JOG movement times	0~100 0	1	回	0x0507	Imm ediately			
Pn507	Set the movement times of the running program in conjunction with JOG operation mode (Pn502) Note: it is infinite when set to 0								
Pn508	Program JOG movement	1~100 00	5 00	rpm	0x0508	Imm ediately			

10. 7 Switch Configuration Related Pn6 Group Parameters

Function code	Parameter	Range	Defa ult	Unit	Communication address	When enabled				
	Digital input signal distributio n mode	0~1	1	-	0x0600	After restart				
Pn600	0-Interna terminal" for o 1-param	Set the binary input signal distribution method: 0-Internal fixed: used by pins and functions fixed inside the servo unit. See "CN1 terminal" for details. 1-parameter configuration: It is used according to the function configured on each pin and is configured and used by function code Pn601~Pn609								
	CN1- 40 input configurat ion	0~0x114	0x01	-	0x0601	After restart				
	CN1- 42 input configurat ion	0~0x114	0x02	-	0x0602	After restart				
	CN1- 43 input configurat ion	0~0x114	0x03	-	0x0603	After restart				
Pn601 Pn602 Pn603	CN1- 41 input configurat ion	0~0x114	0x05	1	0x0604	After restart				
Pn604 Pn605 Pn606 Pn607 Pn608	CN1- 44 input configurat ion	0~0x114	0x04	-	0x0605	After restart				
Pn609	CN1- 45 input configurat ion	0~0x114	0x06	-	0x0606	After restart				
	CN1- 46 input configurat ion	0~0x114	0x07	-	0x0607	After restart				
	CN1- 39 input configurat ion	0~0x114	0x00	-	0x0608	After restart				
	CN1- 38 input	0~0x114	0x00	-	0x0609	After restart				

	configurat ion						
	0x00: inv	alid				L	
	0x01: Se	rvo enable 0x10	1: Servo e	enable rev	verse		
	0x02: Po	sitive limit		(0x102: Positive limit relea	se	
		gative limit			0x103: Negative limit release		
		arm clearing			0x104: Alarm clearing inverted		
		anual PI-P contro			0x105: Manual PI-P control reverse		
		rque limit switch			0x106: Torque limit switch reverse		
	0x07: res				0x107: reserved		
		ernal speed com			ection 0x108: Interna	ai speed	
		ection selection I ernal speed com			0x109: Intern	al cood	
	command sel	OX 109. IIILEII	iai speeu				
	0x0A: Internal speed command selection B 0x10A: Internal speed						
	command selection B is reversed						
	0x0B: Control mode switch 0x10B: Control mode switch re						
	0x0C: Zero-speed clamp 0x10C: Zero-speed clamp rev						
		ommand pulse p	rohibited		0x10D: Command pulse	prohibited	
	inversion						
	0x0E: Gain switching 0x10E: Gain switching reverse						
	0x0F: Torque command direction selection 0x10F: Torque command						
	direction selection reverse						
	0x10: Command pulse ratio switch 0x110: Command pulse ratio switch reverse						
			ature input	t	0x112: Motor over tempe	erature input	
	0x12: Motor over temperature input 0x112: Motor over temperature input inverted						
	0x16: Int	ernal position co	mmand tri	igger (x116: Internal position co	mmand trigger	
	inversion						
		ernal position co	mmand se	election b	it0 0x117: Internal po	sition command	
	selection bit0						
		ernal position co	mmand se	election b	it1 0x118: Internal po	sition command	
	selection bit1	inverted ernal position co	mmand e	alaction h	it2 0x119: Internal po	eition command	
	selection bit2		illillallu st	election b	itz 0x119. Internal po	Silion command	
		ernal position co	mmand s	election b	oit3 0x11A: Internal pos	sition command	
	selection bit3				•		
		ernal position co	mmand s	election b	oit4 0x11B: Internal pos	sition command	
	selection bit4						
		ero point return	enable		0x11C: Zero point	return enable	
	reverse	riain aianal			Ov11D: Origin sign	al rayaraa	
		rigin signal orward jog			0x11D: Origin sign 0x11E: Forward jo		
		egative jog			0x11F: Negative j		
		ernal position sto	no bit		0x120: Internal pos		
	inverted						
		capture function	n is enable	ed	0x121: The capture	function is	
	enabled	1					
	Switc						
	h input internal	0~0x114	0x00		0x0610	After	
	configurat	U~UX114	UXUU	-	0,0010	restart	
	ion 1						
	Switc						
Pn610	h input					A 61	
Pn611	internal	0~0x114	0x00	-	0x0611	After restart	
Pn612	configurat					restart	
	ion 2						
	Switc						
	h input internal	0~0x114	0x00		0x0612	After	
	configurat	U~UX114	UXUU	_	0x0012	restart	
	ion 3						
					•		

	0x00: inv	ralid					
		rvo enable 0x10	1: Servo e				
	0x02: Po	sitive limit		C	0x102: Positive limit relea	se	
		gative limit			0x103: Negative limit relea		
		arm clearing			0x104: Alarm clearing inverted		
	0x05: Ma	anual PI-P contro	ol		0x105: Manual PI-P control reverse		
		rque limit switch		(0x106: Torque limit switch	h reverse	
	0x07: res				0x107: reserved		
	0x08: Internal speed command direction selection 0x108: Internal speed						
		ection selection I					
	0x09: Internal speed command selection				0x109: Intern	nal speed	
		ection A is rever					
		ernal speed com		ection B	0x10A: Inter	nal speed	
		ection B is rever			0.400.0		
		ontrol mode swite			0x10B: Control mode		
		ero-speed clamp			0x10C: Zero-speed o		
	inversion	ommand pulse p	ronibilea		0x10D: Command pulse	pronibiled	
		ain switching			0x10E: Gain switching re	overce	
			diraction e	alaction			
	0x0F: Torque command direction selection 0x10F: Torque command direction selection reverse						
	0x10: Command pulse ratio switch 0x110: Command pulse ratio						
	switch reverse						
	0x12: Motor over temperature input 0x112: Motor over temperature input						
	inverted						
		ernal position co	mmand tri	igger 0	x116: Internal position co	mmand trigger	
	inversion						
		ernal position co	mmand se	election bi	it0 0x117: Internal po	sition command	
	selection bit0						
		ernal position co	mmand se	election bi	it1 0x118: Internal po	sition command	
	selection bit1	inverted ernal position co	mmand co	alaction bi	it2 0x119: Internal po	cition command	
	selection bit2		IIIIIaiiu St	election bi	itz Oxi 19. internai po	Silion command	
		ernal position co	mmand s	election h	it3 0x11A: Internal pos	sition command	
	selection bit3		minana o	Olootion b	no ox i i i i i i i i i i i i i i i i i i	onion communa	
		ernal position co	mmand s	election b	it4 0x11B: Internal pos	sition command	
	selection bit4						
	0x1C: Ze	ero point return	enable		0x11C: Zero point	return enable	
	reverse						
		igin signal			0x11D: Origin sign		
		rward jog			0x11E: Forward jo		
		egative jog			0x11F: Negative j		
		ernal position sto	op bit		0x120: Internal pos	sition stop bit	
	inverted	a continua fina -4:	n io onati	lad	0v404. The	ra function is	
	enabled	e capture function	n is enab	ied	0x121: The captur	re runction is	
	CN1-25, 26					I	
	output		0x00				
	configurat	0~0x109	0	-	0x0613	After restart	
	ion		*				
	CN1-27, 28						
Pn613	output	0.0-400	0x00		0.0044	A 64	
Pn614 Pn615	configurat	0~0x109	1	-	0x0614	After restart	
FIIO13	ion						
	CN1-29, 30						
	output	0~0x109	0x00	l <u>-</u>	0x0615	After restart	
	configurat	2 42.00	2				
	ion						

		rvo ready			0x100: Servo ready signal inverted		
		sitioning comple	ted	0x101: Positioning of	ompleted signal		
	reversed				0.400 0	to at almost	
		eed consistent			0x102: Speed consis	tent signai	
	reverse	tation detection	oianal		0x103: Reverse rota	tion dotaction	
	signal	itation detection	signai		0x103. Reverse 10ta	tion detection	
		the torque limit,			0x104: Invert the sig	nal in the	
	torque limit	ino torquo iirriit,			oxioi: invoit are sig	nai iii tilo	
		the speed limit,			0x105: Invert the sign	anal in the	
	speed limit	,				9	
		ake interlock			0x106: The brake in	terlock signal is	
	reversed				0 40 7 D		
	0x07: Wa				0x107: Reverse war		
	inverted	sitioning proximi	ty signai		0x108: Positioning p	roximity signai	
		mmand pulse in	nut ratio e	witching e	ignal 0x109: Comma	nd nulse input	
		g signal reverse	put ratio 3	iighai ox 105. Oomina	ina paise inpat		
		rque reaches ou	tput		0x10A: Torque read	hes output	
	reverse						
	0x11: Re	turn to origin cor	mplete sig	nal	0x111: Invert the co	mplete signal of	
	origin return						
	Functi						
	on	0x00~0	0	_	0x0622	After	
	selection	x11				restart	
Pn622	switch	selection switch					
F 11022		gh binary output		out (ALM)	hilev si lenis		
		w binary output a					
		eck out warning		· ut (/ 12.11.)	orginal to valia		
		t check out warn	ing				
	SI						
	terminal	_					
Pn623	input	$0\sim$	0	m	0x0623		
111020	filter	32767	0	S	5X0020		
	111001						
	time						

10.8 Pn7 Expansion Related Parameters

Function code	Parameter	Range	Default	Unit	Communicati on address	When enabled	
Pn702	Inertia recognition movable range	0.2~20.0	2	r	0x0702	Immediately	
	The number of rotations of process	of the motor	during t	he inert	ia identifi	cation	
Pn705	Initial value of inertia identification	0~20000	0	%	0x0705	Immediately	
	Initial value setting of inertia identification						
Pn706	Vibration detection level in inertia identification (rotation)		0	r/min	0x0705	Immediately	
	Vibration detection level	l setting in	inertia	identifi	cation		
Pn730	No motor test function selection	0x00~0x01	0		0x0730	After repower	

	The motorless test function is a function that does not start the motor, simulates the action of the motor inside the servo unit, and confirms the action of the upper device and peripheral equipment. Through this function, you can confirm the wiring, verify the parameter value, and verify the system debugging failure. , Thereby shortening the setting work time and avoiding mechanical damage caused by wrong actions. When running without the motor test function, the action of the motor can be confirmed regardless of whether the motor is connected or not. 0-invalid 1-valid						
	Encoder resolution selection without motor test function	0~3	1	_	0x0731	After repower	
Pn731	When the motorless test mode is selected, the motor encoder resolution setting: 0-13 bit 1-17 bit 2-20 bit 3-23 bit Note: When the encoder is actually connected, use the resolution of the actual encoder.						
	Encoder type selection without motor test function	0x00~0x01	0	_	0x0732	After repower	
Pn732	Set the encoder type without motor test function: 0-incremental encoder 1-absolute encoder						
	Absolute encoder operation	0~2	0	_	0x0792	After repower	
Pn792	0-No action 1- Write motor parameters 2-Clear the number of mul replaced/plugged during tencoder backup alarm (Er. This parameter is set to 3-Clear encoder alarm onl set this parameter to 3 tenution and keep	ti-turn ence the first us 810) will b 2, and only Ly: When the to clear the	oder turn e or the e reporte after po encoder encoder	s: The b drive is d when t wer on a alarm (B alarm bu	s powered of the power is again Clear. Er. 810, Er. 8 it not the e	turned on. 60,) can	
Pn798	Multi-turn absolute encoder zero offset	0~ 2147483647	0	Unit	0x0792	After repower	
	Multi-turn absolute enco	der zero off	set posit	ion sett	ing		
Pn79A	Minimum software limit absolute position (32 bits)	-2147483648~ 2147483647	-21474 83648	Unit	0x079A	After repower	
1111011	The minimum software limit absolute position setting, when the absolute position of the motor (UNO21) is less than this position, the servo will enter the limit alarm state						
Pn79C	Maximum software limit absolute position (32 bits)	-2147483648~ 2147483647	-21474 83648	Unit	0x079C	After repower	

	Maximum software limit al motor (UNO21) is greater t alarm state	*			-	
Pn79E	Software limit absolute position switch	0~1	0	N/A	0x079E	Immediately
FIITSE	Software limit absolute p 0: off 1: on	oosition swite	ch setti	ng:		
Pn7A0	Encoder overflow times	$-32768 \sim 32767$	0	N/A	0x07A0	Immediately
	Record the overflow times of multi-turn absolute encoder					
	Blocked-rotor overload protection time percentage	0~100	8	N/A	0x07A1	After repower
Pn7A1	This parameter sets the percentage of time that the motor will report overload after the motor is blocked. If it is set too large, the drive may be damaged. To protect the safety of the drive, please change this value under the guidance of the manufacturer's technical support.					

10. 9 Pn8 group internal position/origin return parameters

Functio n code	Parameter	Range	Default	Unit	Communic ation address	When enabled		
Pn800	Return to origin control word	0∼0xFFFFFFFF	0x0	_	0x0800	Immediat ely		
	Home return cont	rol word mode setting, s	ee Chapt	er 8 for d	letails			
Pn802	Zero position offset value	-2147483648~ 2147483647	0	Unit	0x0802	Immediat ely		
	Zero position of	fset position setting						
Pn804	Pr1 control word	0~0x80000000	0x0	_	0x0804	Immediat ely		
	The first position setting, see Chapter 8 for details							
Pn806	Pr1 pulse number	-2147483648~ 2147483647	0	Unit	0x0806	Immediat ely		
	Set the position of the first paragraph							
Pn808	Pr2 control word	0~0x80000000	0x0	=	0x0808	Immediat ely		
	Like Pn804							
Pn80A	Pr2 pulse number	$-2147483648 \sim$ 2147483647	0	Unit	0x0810	After repower		
	2nd position set	ting						
Pn80C	Pr3 control word	0~0x80000000	0x0	_	0x080C	After repower		
	Like Pn804							
Pn80E	Pr3 pulse number	-2147483648 \sim 2147483647	0	Unit	0x080E	Immediat ely		

	3rd position setting							
Pn810	Pr4control word	0∼0x80000000	0x0	_	0x0810	Immediat ely		
111010	Like Pn804							
Pn812	Pr4 pulse number	-2147483648~ 2147483647	0	Unit	0x0812	Immediat ely		
	4th position set	ting 		1		Immediat		
Pn814	Pr5control word	0~0x80000000	0x0	_	0x0814	ely		
	Like Pn804	L 04 15 1000 10		_		T		
Pn816	Pr5 pulse number	$-2147483648 \sim$ 2147483647	0	Unit	0x0816	Immediat ely		
111010	5th position set			1		CIJ		
Pn818		0∼0x80000000	0x0		0x0818	Immediat ely		
	Like Pn804							
Pn81A	Pr6 pulse number	-2147483648~ 2147483647	0	Unit	0x081A	Immediat ely		
	6th position set	ting						
Pn81C	Pr7control word	0~0x80000000	0x0	_	0x081C	Immediat ely		
	Like Pn804							
Pn81E	Pr7 pulse number	-2147483648~ 2147483647	0	Unit	0x081E	Immediat ely		
	7th position setting							
Pn820	Pr8control word	0∼0x80000000	0x0	_	0x0820	Immediat ely		
	Like Pn804	T			1	_		
Pn822	Pr8 pulse number	$-2147483648 \sim$ 2147483647	0	Unit	0x0822	Immediat ely		
	8th position set	ting						
Pn824	Pr9control word	0~0x80000000	0x0	_	0x0824	Immediat ely		
	Like Pn804							
D., 00C	Pr9 pulse number	-2147483648~ 2147483647	0	Unit	0x0826	Immediat ely		
Pn826	9th position set	ting	•					
Pn828	Pr10control word	0~0x80000000	0x0	_	0x0828	Immediat ely		
1 11040	Like Pn804							
Pn82A	Pr10 pulse number	-2147483648~ 2147483647	0	Unit	0x082A	Immediat ely		
	10th position se	tting						

Pn826										
Pril pulse	Pn82C		0~0x80000000	0x0	_	0x082C	Immediat ely			
Number		Like Pn804								
Pr12 control 0~0x80000000 0x0 — 0x0830 Immediately	Pn82E	*		0	Unit	0x082E	Immediat ely			
Pn830		11th position set	ting							
Pn832	Pn830		0∼0x80000000	0x0	_	0x0830	Immediat ely			
Pn832		Like Pn804								
Pn834	Pn832	*		0	Unit	0x0832	Immediat ely			
Pn834 word		12th position set	ting							
Pr13 pulse	Pn834		0∼0x80000000	0x0	=	0x0834	Immediat ely			
Pn836		Like Pn804								
Pn838	Pn836	*		0	Unit	0x0836				
Pn838		13th position set	ting							
Dike Pn804 Pr14 pulse			0~0x80000000	0x0	_	0x0838	Immediat ely			
Number 2147483647 0	Pn838	Like Pn804								
14th position setting	Pn83A	*		0	Unit	0x083A	Immediat ely			
Pn83C word 0~0x80000000 0x0 — 0x083C ely Like Pn804 Pn83E Pr15 pulse number 2147483648~ 2147483648~ 0 Unit 0x083E Immediat ely 15th position setting Pr16 control word 0~0x8000000 0x0 — 0x0840 Immediat ely Like Pn804 Pn842 Pr16 pulse number 2147483648~ 0 Unit 0x0840 Unit 0x0840 Immediat ely I6th position setting Pr17 control word 0~0x80000000 0x0 — 0x0844 Immediat ely	1110011	14th position setting								
Prince	Pn83C		0~0x80000000	0x0	_	0x083C	Immediat ely			
Pn83E number 2147483647 0 Unit 0x083E ely Pn840 Pr16 control word 0 ~ 0x80000000 0x0 - 0x0840 Immediat ely Like Pn804 Pn842 Pr16 pulse number -2147483648~ 2147483647 0 Unit 0x0840 Immediat ely I6th position setting Pr17 control word 0 ~ 0x80000000 0x0 - 0x0844 Immediat ely	1 11000	Like Pn804		•						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pn83E	_		0	Unit	0x083E	Immediat ely			
Pn840 word 0~0x80000000 0x0 — 0x0840 ely Like Pn804 Pn842 Pr16 pulse number -2147483648~ 0 Unit 0x0840 Immediat ely 16th position setting Pr17 control word 0~0x80000000 0x0 — 0x0844 Immediat ely		15th position setting								
Like Pn804 Pr16 pulse	D., 0.40		0~0x80000000	0x0	_	0x0840	Immediat ely			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	rn840	Like Pn804								
Pn844 Pr17 control 0~0x80000000 0x0 - 0x0844 Immediat ely	Pn842	*		0	Unit	0x0840	Immediat ely			
Pn844 word $0 \sim 0 \times 80000000$ 0×0 $ 0 \times 0 \times 0 \times 0$ ely		16th position set	ting							
	Pn844		0~0x80000000	0x0	_	0x0844	Immediat ely			
LIKE PHOU4	. 110 11	Like Pn804		•		•				

			1			1		
Pn846	Pr17 pulse number	-2147483648~ 2147483647	0	Unit	0x0846	Immediat ely		
1 110 10	17th position set	ting				1		
Pn848	Pr18 control word	0~0x80000000	0x0	-	0x0848	Immediat ely		
	Like Pn804							
Pn84A	Pr18 pulse number	$-2147483648 \sim$ 2147483647	0	Unit	0x084A	Immediat ely		
	18th position set	ting						
Pn84C	Pr19 control word	0~0x80000000	0x0		0x084C	Immediat ely		
	Like Pn804				1			
Pn84E	Pr19 pulse number	$-2147483648 \sim$ 2147483647	0	Unit	0x084E	Immediat ely		
	19th position set	ting						
	Pr20 control word	0~0x80000000	0x0	_	0x0850	Immediat ely		
Pn850	Like Pn804							
Pn852	Pr20 pulse number	$-2147483648 \sim$ 2147483647	0	Unit	0x0852	Immediat ely		
	20th position setting							
Pn854	Pr21 control word	0~0x80000000	0x0	_	0x0854	Immediat ely		
	Like Pn804							
Pn856	Pr21 pulse number	$-2147483648 \sim$ 2147483647	0	Unit	0x0856	Immediat ely		
	21th position setting							
Pn858	Pr22 control word	0~0x80000000	0x0	_	0x0856	Immediat ely		
	Like Pn804							
Pn85A	Pr22 pulse number	-2147483648~ 2147483647	0	Unit	0x085A	Immediat ely		
	22th position setting							
Pn85C	Pr23 control word	0~0x80000000	0x0	_	0x085C	Immediat ely		
	Like Pn804							
Pn85E	Pr23 pulse number	$-2147483648 \sim$ 2147483647	0	Unit	0x085E	Immediat ely		
	23th position set	ting						
Pn860	Pr24 control word	0~0x80000000	0x0	_	0x0860	Immediat ely		
	Like Pn804							

Pn862	Pr24 pulse number	-2147483648 \sim 2147483647	0	Unit	0x0862	Immediat ely	
	24th position set	ting				•	
Pn864	Pr25 control word	0~0x80000000	0x0	_	0x0864	Immediat ely	
	Like Pn804						
Pn866	Pr25 pulse number	$-2147483648 \sim$ 2147483647	0	Unit	0x0866	Immediat ely	
	25th position set	ting					
	Pr26 control word	0~0x80000000	0x0	_	0x0868	Immediat ely	
Pn868	Like Pn804						
Pn86A	Pr26 pulse number	-2147483648~ 2147483647	0	Unit	0x086A	Immediat ely	
	26th position set	ting					
Pn86C	Pr27 control word	0~0x80000000	0x0	_	0x086C	Immediat ely	
	Like Pn804						
Pn86E	Pr27 pulse number	$-2147483648 \sim$ 2147483647	0	Unit	0x086E	Immediat ely	
	27th position set	ting					
Pn870	Pr28 control word	0~0x80000000	0x0	_	0x0870	Immediat ely	
	Like Pn804						
Pn872	Pr28 pulse number	$-2147483648 \sim$ 2147483647	0	Unit	0x0872	Immediat ely	
	28th position setting						
Pn874	Pr29 control word	0~0x80000000	0x0		0x0874	Immediat ely	
	Like Pn804		ı		r	1	
Pn876	Pr29 pulse number	$-2147483648 \sim$ 2147483647	0	Unit	0x0876	Immediat ely	
	29th position set	ting					
Pn878	Pr30 control word	0~0x80000000	0x0	_	0x0878	Immediat ely	
	Like Pn804						
Pn87A	Pr30 pulse number	$-2147483648 \sim$ 2147483647	0	Unit	0x087A	Immediat ely	
	30th position set	ting	ı	ı	ı	Т	
Pn87C	Pr31 control word	0~0x80000000	0x0	_	0x087C	Immediat ely	
	Like Pn804	005 00700 00000 00000	Tb				

-								
Pn87E	Pr31 pulse number	$-2147483648 \sim$ 2147483647	0	Unit	0x087E	Immediat ely		
111012	31th position set	ting		•		•		
Pn880	Pr Acc and dec time 0	0~60000	50	ms	0x0880	Immediat ely		
	Acc and dec time	e setting0						
Pn881	Pr Acc and dec time 1	0~60000	200	ms	0x0881	Immediat ely		
	Acc and dec time	e setting 1						
Pn882	Pr Acc and dec time 2	0~60000	300	ms	0x0882	Immediat ely		
	Acc and dec time	e setting 2						
Pn883	Pr Acc and dec time 3	0~60000	400	ms	0x0883	Immediat ely		
	Acc and dec time	e setting 3						
Pn884	Pr Acc and dec time4	0~60000	500	ms	0x0884	Immediat ely		
	Acc and dec time	setting 4						
Pn885	Pr Acc and dec time 5	0~60000	600	ms	0x0885	Immediat ely		
	Acc and dec time	Acc and dec time setting 5						
Pn886	Pr Acc and dec time 6	0~60000	700	ms	0x0886	Immediat ely		
	Acc and dec time setting 6							
Pn887	Pr Acc and dec time 7	0~60000	800	ms	0x0887	Immediat ely		
	Acc and dec time setting 7							
Pn888	Pr target speed 0	0~6000	100	r/min	0x0888	Immediat ely		
	target speed 0 s	setting						
Pn889	Pr target speed 1	0~6000	200	r/min	0x0889	Immediat ely		
	target speed 1 s	setting						
Pn88A	Pr target speed 2	0~6000	500	r/min	0x088A	Immediat ely		
	target speed 2 s	setting						
Pn88B	Pr target speed 3	0~6000	1000	r/min	0x088B	Immediat ely		
	target speed 3 s	setting						
Pn88C	Pr target speed 4	0~6000	1500	r/min	0x088C	Immediat ely		
	target speed 4 s	setting						
Pn88D	Pr target speed 5	0~6000	2000	r/min	0x088D	Immediat ely		
		206 CD700 Corios Corre						

	target speed 5 s	setting					
Pn88E	Pr target speed 6	0~6000	2500	r/min	0x088E	Immediat ely	
	target speed 6 s	setting					
Pn88F	Pr target speed 7	0~6000	3000	r/min	0x088F	Immediat ely	
	target speed 7 s	setting					
Pn890	Pr delay timeO	0~6000	0	0.1s	0x0890	Immediat ely	
	Delay timeO setting						
Pn891	Pr delay time 1	0~6000	1	0.1s	0x0891	Immediat ely	
	Delay time 1 setting						
Pn892	Pr delay time 2	0~6000	5	0.1s	0x0892	Immediat ely	
	Delay time 2 setting						
Pn893	Pr delay time 3	0~6000	10	0.1s	0x0893	Immediat ely	
	Delay time 3 setting						
Pn894	Pr delay time 4	0~60000	100	0.1s	0x0894	Immediat ely	
	Delay time4 setting						
Pn895	Pr delay time 5	0~60000	1000	0.1s	0x0895	Immediat ely	
	Delay time 5 set	ting					

Monitoring Parameters 11

Monitoring code	Monitoring name	range	unit	mailing address			
11-000	Motor rotation speed	0x80000000~0x7fffffff	rpm	0xE000			
Un000	Display the actual speed of the servo motor						
	Speed command	0x80000000~0x7fffffff	rpm	0xE001			
Un001	Display the current speed command of the servo motor Note: When it is not enabled, this value shows the analog speed (corresponding to V-REF)						
	Internal torque command	0x80000000~0x7fffffff	%	0xE002			
Un002	Display current actual torque command with servo motor rated torque as 100%						
Un003	Rotor pulse position relative to the Z axis	0x80000000~0x7fffffff	pulse	0xE003			
0.1000	Shows the mechanical absolute position of the motor within one revolution of the encoder						

227

	Electrical angle	0x80000000~0x7fffffff	0	0xE004				
Un004								
	Speed of input pulse	ectrical angle of the current positio		or rotor				
Un005	command	0x80000000~0x7fffffff	rpm	0xE005				
	Display input position pulse co	Display input position pulse command speed						
	Counter of input command	0x80000000~0x7fffffff	Command					
Un006	pulse	0.00000000 *0.71111111	Unit	0xE006				
	Displays the number of comm	and pulses received by the servo	motor					
		0x80000000~0x7fffffff	Command	0 5007				
Un007	Counter of feedback pulse		Unit	0xE007				
		d back from the servo motor enco						
	Counter of feedback pulse	0x80000000~0x7fffffff	Encoder	0=000				
Un008	1		pulse unit	0xE008				
	Displays cumulative pulses fe	d back from the servo motor enco						
	Position deviation	0x80000000~0x7fffffff	Command Unit	0xE009				
Un009		en the command pulse number of						
	movement amount							
	Absolute encoder	$0 \mathrm{x} 800000000 \sim$	Encoder	0xE010				
Un010	single-turn value	0x7FFFFFF	unit					
		position value of one-tu	ırn of the abs	olute encoder.				
	Absolute encoder multi-turn value	0 x 80000000 \sim 0 x 7 FFFFFFFF	-	0xE011				
Un011		f multi-turn encoder turn	ne value when	the multi-turn				
011011		After the multi-turn end						
		performed, the value i						
	External encoder	0x80000000~	External					
	feedback pulse	0x7FFFFFF	encoder	0xE012				
Un012	counter		unit					
	Display external encoder feedback pulse counter when external grating							
	Motor absolute	encoder is connecte 0x80000000~	command					
Un021	position	0x7FFFFFF	unit	0xE021				
	<u> </u>	position of the motor, t		e command unit				
Un00A	Cumulative load rate	0x80000000~0x7fffffff	%	0xE00A				
Un00B	Regeneration load rate	0x80000000~0x7fffffff	%	0xE00B				
Un00C	Electricity consumption of DB resistance	0x80000000~0x7fffffff	%	0xE00C				
Un00D	Effective gain monitoring	1~2	=	0xE00D				
Un00E	Total running time	0~0xFFFFFFF	100ms	0xE00E				
Un00F	Overload rate	0~0xFFFFFFF	%	0xE00F				
Un035	DSP software version	0~0xFFFF	-	0xE035				
Un036	FPGA software version	0~0xFFFF	-	0xE036				
	Encoder							
Un087	communication	$0{\sim}0{x}$ FFFF	_	0xE087				
	abnormal times							
Un089	Heat sink temperature	0~0xFFFF	℃	0xE090				
Un091	Motor temperature	$0\sim$ 0xFFFF	$^{\circ}$ C	0xE091				

	IO port inpu			0~0xFFFF			0xE100
	9	 	5	4 3 2 1	up: down: numk		1
Un100	LED	Input p numbe		Signal name (Factory configuration	LED	Inp	ut pin number
	1	CN1-40)	/S-0N	6		CN1-45
	2	CN1-41	1	/P-CON	7		CN1-46
	3	CN1-42	2	P-OT	8		CN1-39
	4	CN1-43	3	N-OT	9		CN1-38
	5	CN1-44	4	/ALM-RST			
	IO port outp monitor			0~0xFFFF	_		0xE101
Un101		9 8 7	6 5	5 4 3 2 1	Up:OF Down:O	F)N r	
	LED				Input pin	numbei	r
		1		CN1-31/32			
		2		CN1-25/26			
		3		CN1-27/28			
		4		CN1-29/30			
Un102	T-REF moi		ut volta	0~0xFFFF ge, according to the a	%	mmand	0xE102
	V-REF moi		ut voita	0~0xFFFF	rpm	1	0xE103
Un103	Corresponds to	the T-REF inpo	ut volta	ge, according to the a			
Un104	Pulse comma frequer			0~0xFFFFFFF	Hz		0xE104
Un108	External input pulse co	command unter		0~0xFFFFFFF	Comma Unit		0xE108
Un110	Integrated mo internal sign			0~0xFFFFFFF	_		0xE110

Un120	Integrated monitoring of internal input signal status	0~0xFFFFFFF	_	0xE120
Un130	Integrated monitoring of internal output signal	0~0xFFFFFFF	_	0xE130
Un140	Main circuit bus voltage	0~0xFFFF	V	0xE140
	Effective current feedback	0~0xFFFF	0.01A	0xE141
Un141	Three-phase synthetic feedba	ick current effective value	<u> </u>	
Un14B	D-axis current command monitoring	0∼0xFFFF	%	0xE14B
Un220	Torque command voltage (uncorrected)	0∼0xFFFF	mv	0xE220
Un221	Torque command voltage (after correction)	0∼0xFFFF	mv	0xE221
Un222	Speed command voltage (uncorrected)	0∼0xFFFF	mv	0xE222
Un223	Speed command voltage (after correction)	0∼0xFFFF	mv	0xE223
Un300	Current alarm code	0~0xFFFF		0xE300
Un301	Last alarm code	0~0xFFFF	_	0xE301
Un302	Timestamp while alarm occurs	0~0xFFFFFFF	100ms	0xE302
Un303	Motor speed while alarm occurs	0~0xFFFF	rpm	0xE303
Un304	Speed command while alarm occurs	0~0xFFFF	rpm	0xE304
Un305	Internal torque command while alarm occurs	0~0xFFFF	%	0xE305
Un306	Input command pulse speed while alarm occurs	0~0xFFFF	rpm	0xE306
Un307	Deviation counters (position deviation)while alarm occurs	0~0xFFFFFFF	pulse	0xE307
Un308	DC bus voltage while alarm occurs	0~0xFFFF	V	0xE308
Un309	Effective current feedback while alarm occurs	0~0xFFFF	%	0xE309
Un30A	Cumulative load rate while alarm occurs	0~0xFFFF	%	0xE30A
Un30B	Regenerative load rate while alarm occurs	0~0xFFFF	%	0xE30B
Un30C	Electricity consumption of DB resistance while alarm occurs	0~0xFFFF	%	0xE30C
Un30D	Maximum cumulative load rate while alarm occurs	0~0xFFFF	%	0xE30D
Un30E	Rotation inertia ratio while alarm occurs	0~0xFFFF	%	0xE30E
Un30F	Abnormal times of serial encoder communication while alarm occurs	0~0xFFFF	_	0xE30F
Un310	Internal signal monitoring while alarm occurs	0~0xFFFFFFF	-	0xE310
Un313	Internal input signal monitoring while alarm occurs	0~0xFFFFFFF	-	0xE313

				-
Un317	Internal output signal monitoring while alarm occurs	0~0xFFFFFFF	-	0xE317
Un30F	The number of serial encoder communication abnormalities when an alarm occurs	0∼0xFFFF	_	0xE30F
Un320	Fault code history 1	0~0xFFFF	-	0xE320
Un321	Fault code history 2	0~0xFFFF	-	0xE321
Un322	Fault code history 3	0~0xFFFF	-	0xE322
Un323	Fault code history 4	0~0xFFFF	-	0xE323
Un324	Fault code history 5	0~0xFFFF	-	0xE324
Un325	Fault code history 6	0~0xFFFF	-	0xE325
Un326	Fault code history 7	0~0xFFFF	-	0xE326
Un327	Fault code history 8	0~0xFFFF	-	0xE327
Un328	Fault code history 9	0~0xFFFF	-	0xE328
Un329	Fault code history 10	0~0xFFFF	-	0xE329
Un330	Fault time history 1	0~0xFFFFFFF	100ms	0xE330
Un331	Fault time history 2	0~0xFFFFFFF	100ms	0xE331
Un332	Fault time history 3	0~0xFFFFFFF	100ms	0xE332
Un333	Fault time history 4	0~0xFFFFFFF	100ms	0xE333
Un334	Fault time history 5	0~0xFFFFFFF	100ms	0xE334
Un335	Fault time history 6	0~0xFFFFFFF	100ms	0xE335
Un336	Fault time history 7	0~0xFFFFFFF	100ms	0xE336
Un337	Fault time history 8	0~0xFFFFFFF	100ms	0xE337
Un338	Fault time history 9	0~0xFFFFFFF	100ms	0xE338
Un339	Fault time history 10	0~0xFFFFFFF	100ms	0xE339

12 Fault Code and Countermeasures

12. 1 Fault Code

Fault code	Fault type	Solutions	
Er.020	Abnormal parameter and check	Enter the parameters again after initializing parameter settings, Write the power level of the driver to 0 first, and then write the correct power level. Note: Remember to perform the current detection correction, analog input correction and bus voltage correction after writing the power level 3. servo driver failure, replace the servo drive	
Er.021	Parameter formatting exception (inconsistent version number)	Perform a soft reset. If the fault is still reported, write the driver's power level to 0 and then write the correct power level. Note: Remember to perform the current detection correction, analog input correction and bus voltage correction after writing the power level servo driver failure and replace the servo drive	

Er.022	Abnormal system and check	Perform a soft reset. If the fault is still reported, write the driver's power level to 0 and then write the correct power level. Note: Remember to perform the current detection correction, analog input correction and bus voltage correction after writing the power level	
Er.030	Abnormal detection in main circuit	Servo driver fails, replace the servo driver	
Er.040	Abnormal parameter setting	Check whether the changed parameters are out of range Check if the setting of electronic gear ratio is within the setting range (electronic gear ratio: 0.001~16777216/1000) Check whether the servo drive and servo motor capacity match I/O terminal definition repeat	
Er.041	Abnormal frequency division pulse output setting	According to the number of encoder bits, the number of encoder frequency division pulses is set to an appropriate value, see the specification	
Er.042	Abnormal parameter combination	Make the setting value of electronic gear ratio within the setting range make the program JOG settings related to logic	
Er.044	Abnormal setting of loop parameters	Set the half closed loop / full closed loop parameters correctly	
Er.050	Unmatched drive and motor capacity	check if the driver power and motor power are correct replace the drive or motor so that it is within a reasonable range	
Er.051	Alarm caused by product technical support failure	Connect the function modules can not be supported by the product, please select the matching combination	
Er.080	Abnormal distance setting corresponding to unit pulse of encoder	Correctly set the distance corresponding to the unit pulse of the encoder	
Er.08A	Abnormal resolution setting of position sensor	Set the resolution of position sensor correctly	
Er.0B0	Invalid servo ON command alarm	Re-power on or perform a soft reset	
Er.100	Over-current fault	1. Check whether the motor phase sequence is wrong 2. Check whether the motor is damaged and use a multimeter to measure whether U/V/W is short together. 3. Check the motor encoder angle is correct 4. Monitor the UV phase current sampling AD value in the disabled state through a virtual oscilloscope to determine whether it is a driver hardware current sampling fault. Normally, it is near zero.	

Er. 300	Braking resistor failure	1. Correctly wire the external regenerative resistor. 2. After troubleshooting the wiring, it may be a servo drive problem, replace the servo drive
Er.320	Regeneration overload	1. Check whether the bus voltage of the driver is within a reasonable range when it is not enabled. If the bus voltage is detected incorrectly, there is a possibility of accidental braking or accidental protection. 2. Confirm the brake resistor wiring is correct; see the instructions for details. 3. According to the load situation, consider the current choice of braking resistor is appropriate; see the braking resistor selection rules for details. 4. If the wiring is correct, and the braking resistor is selected properly, and the operation still reports regenerative overload, you can monitor whether there is a small drop when the bus voltage reaches the braking point during operation by the host computer or the keyboard. If the bus voltage reaches the braking point and it still rises smoothly, it can be judged that the brake pipe is damaged. 5. If the fault is reported in the last operation, run after waiting for a while after powering on.
Er.330	Main circuit power wiring error	Connect the main circuit power cord correctly
Er.400	Over-voltage	1. When the power supply voltage is not enabled, measure the power supply voltage at the same time monitor whether the bus voltage (Un140) is 1.414 times of the input power voltage (AC RMS). If the deviation is large, it can be determined as bus voltage detection hardware failure. 2. Measure the power supply voltage. If the power supply voltage is adjustable, adjust the power supply voltage within the product specification range. If it is not adjustable and the power supply voltage is in an unstable state, you may consider installing a voltage regulator. 3, consider the operating conditions and load, determine the brake resistor selection is reasonable (whether the resistance is too large), if the overvoltage caused by frequent acceleration and deceleration, you may consider replacing the brake resistor 4. there may be brake pipe damage, check the brake pipe 5. Make sure to guarantee that the motor is running at a tolerable moment of inertia ratio and mass ratio 6, servo drive failure, replace the servo drive

Er.410	Under-voltage	1. check whether the power input terminal line is connected 2. When the power supply voltage is not enabled, measure the power supply voltage at the same time monitor whether the bus voltage (Un140) is 1.414 times of the input power voltage (AC RMS). If the deviation is large, it can be determined as bus voltage detection hardware failure. 3. Measure the power supply voltage. If the power supply voltage is adjustable, adjust the power supply voltage within the product specification range. 4. Measure the power supply voltage. If the power supply voltage is in an unstable state, you may consider installing a voltage regulator. 5. if the power capacity is adjustable, you can advise customers to increase in power capacity
Er.42A	Motor over temperature	Reduce motor load Strengthen motor heat dissipation Check the motor over temperature signal circuit
Er.510	Over-speed	Check whether there is any problem with the motor wiring and whether the UVW three-phase connection is reversed. Confirm that the encoder connection is abnormal. Check if the maximum speed setting in the motor parameters is correct 4. Check whether the input command exceeds the over-speed value 5. Reduce the servo gain or set a certain smoothing time
Er.511	Divided pulse output speed	Reduce the number of divided output pulses per revolution (Pn070) If the working conditions are allowed, you may reduce the motor speed
Er.520	Vibration alarm	If the working conditions are allowed, you may reduce the motor speed or reduce the speed loop gain. correctly set the rotary inertia ratio properly set the vibration detection value (Pn187) and vibration detection sensitivity (Pn186)
Er.550	Abnormal maximum speed setting	
Er.710	Overload (instantaneous maximum load)	Check if the motor is stalled during operation Check whether there is any problem with the motor wiring (phase sequence, connection) and encoder wiring. Consider the operating conditions and load and determine if the driver or motor selection is reasonable Observe whether there is large vibration in the running process of the motor. If there is a large noise, adjust the gain parameter to eliminate noise or jitter. At the same time, you can use the virtual oscilloscope to monitor whether the motor output torque is abnormal or not.
Er.720	Overload (continuous maximum load)	Check whether there is any problem in the motor wiring (phase sequence and connection) and encoder wiring. consider the operating conditions and load and determine the driver or motor selection is reasonable Observe whether the motor has large jitter during operation. If there is a huge noise, adjust the gain parameter to eliminate noise or jitter. Also, use a virtual oscilloscope to monitor whether the motor output torque is abnormal.

Er.730	DB overload 1	The load is too heavy when the machine stops that cause the overload DB resistor and you could try to reduce the operating speed or reduce t load. check whether the motor is driven by external force according to customer needs, re-evaluate whether it needs to pass the I mode requirements during the shutdown, if you do not need, you can choo other ways to stop If the fault is reported in the last operation, run after waiting for a while af powering on.	
Er.731	DB overload 2	Reduce the command speed of servo motor. Reduce the moment of inertia ratio. Servo driver problem, replace servo	
Er.740	Inrush current limiting resistance fault	The servo driver is faulty. Replace the servo driver	
Er.7A0	Heat sink over- heat	1. Check whether the air duct is blocked and the fan is damaged with a f drive. 2. Check the installation conditions of the driver, whether the heat dissipation condition is good or not and increase the heat dissipation condition of t driver as much as possible. 3. Check the drive load conditions, if the load is too heavy, you can suggest that customers replace a high-power segment of the drive. 4. If possible, reduce the driver carrier frequency	
Er.7AA	Abnormal temperature of control board	Inprove the installation condition of servo driver and reduce the ambient temperature. Reconfirm the load conditions and operation conditions. Servo driver failure, replace the servo driver.	
Er.7AB	The fan inside the drive does not turn	Is there any foreign matter blocking the fan Servo driver failure, replace servo driver	
Er.810	Abnormal encoder backup	Check the multi-turn encoder battery power condition Perform multi-turn encoder clear operation	
Er.830	Battery under- voltage	Replace multi-turn encoder battery	
Er. 840	Encoder data is abnormal	Encoder data is abnormal	
Er. 850	Encoder overspeed	Encoder overspeed	
Er. 860	Encoder temperature is high	Reduce the motor load rate Strengthen the heat dissipation effect of the motor	

CANopen node protection failure	1. Check if the slave is offline 2. Check whether the node protection time setting is correct			
CANopen heartbeat detection timeout	Check if the host is offline Check whether the heartbeat detection time matches the host heartbeat production time			
Output UVW phase loss alarm	Check whether the motor cable are connected well, or check the inverter output voltage.			
Hardware over- current	Unplug the power cable and turn on the servo unit again. If an alarm still occurs, the servo unit may be malfunctioning, and then you could replace the servopack. If not, confirm whether it is power line or motor failure			
Out of control alarm	Check if the motor wiring is normal Check if the motor and encoder are normal Re-connect the servo drive power, if an alarm still occurs, it may be a servo drive failure			
Encoder communication failure: line- broken	Use multimeter to test every signal line of the encoder line and see if signal lines break. Check the encoder line model and confirm the model is correct.			
Abnormal encoder communication position data acceleration	3. Check the length of the encoder line and the encoder line can not be too long. 4. It may be caused by interference, try to ground the driver or wire the encoder around the magnetic ring 5. check the motor group parameters and confirm the motor is correct			
Abnormal encoder parameters	If you already exclude various reasons and the servo driver may malfunction, then you could consider replacing the servo unit.			
Excessive position deviation	Set the appropriate position deviation excessive alarm value Check whether the encoder cable and motor cable are connected properly. You can use the hand to rotate the motor and monitor whether the Un003 (rotor relative Z pulse position) varies between 0 and 16777216 (24-bit encoder). Calculate the pulse frequency input and acceleration planning and check if the electronic gear ratio setting is reasonable Determine whether the relevant parameters are reasonable. For example: you could check the torque limit, speed limit, inertia ratio, position gain, speed gain is too small or the position filter is too large, etc. Calculate if the motor selection is too small or the acceleration and deceleration are too slow that cause huge position deviation.			
Excessive position deviation during servo ON	Set correct value of Pn267 (overrunning position deviation when servo is ON)			
Excessive position deviation alarm caused by speed limit during servo ON	Set correct Maximum position deviation threshold (Pn264) or set correct speed limit value (Pn270) during servo ON.			
Excessive deviation between motor and load position	1. Confirm the rotation direction of the motor and the installation direction of the external encoder 2. Check the mechanical installation. 3. Set the parameter Pn250 to the correct value.			
	CANopen heartbeat detection timeout Output UVW phase loss alarm Hardware over-current Out of control alarm Encoder communication failure: line-broken Abnormal encoder communication position data acceleration Abnormal encoder parameters Excessive position deviation deviation during servo ON Excessive position deviation alarm caused by speed limit during servo ON Excessive deviation between motor and load			

12.2 Warning Code

Warning code	Туре	Solutions
		Correctly set relevant parameters such as gear ratio, gain, position filtering, torque limit, etc.
AL.900	Excessive Position deviation warning	2. confirm the encoder line motor wiring is correct
	ao naton na ming	If you already exclude various reasons, the servo driver may malfunction and you could consider replacing the servo unit.
AL.901	Excessive position deviation warning during servo ON	Set correct excessive position deviation value during servo ON
AL 910	Overload warning	Check if there is any problem of the motor wiring and encoder wiring.
AL.910	Overload warning	2. Incorrect motor or driver selection
AL.911	Vibrationomina	Reduce the motor speed or reduce the speed loop gain.
AL.911	Vibration warning	2. Set the moment of inertia ratio correctly
		Set the power supply voltage within the specification range.
AL.920	Regeneration overload warning	2. Set resistance value and capacity correctly
	oronous manning	3. Replace the servo drive because of servo driver failure
		Reduce the servo motor command speed.
AL.921	DB overload warning	2. Reduce the rotary inertia ratio.
		3. Replace the servo drive because of servo driver failure
AL.930	Battery under-voltage warning	Replace the battery
AL.941	Parameter change warning needed to re- power off	Power down the drive before restart it
AL.971	Under-voltage	Adjust the AC/DC power supply voltage to the product specifications.
AL.9/ I	warning	2. increase the power capacity.
		1. Connect the overtravel signal correctly
AL. 9A0	Servo overtravel	2. Confirm the accuracy of the operating instructions of the host computer device

13 Communication

13. 1 Communication introduction

Servo driver can support RS485, CANopen bus type, EtherCAT bus type, MECHATROLINK-II bus type. Here we mainly introduce the related content of general model RS485 communication. Other communication needs to refer to the special communication manual. 485 communications can realize the following functions.

- a) Read and write servo driver function code related parameters
- b) Monitor the working status of the servo drive
- c) Constitute a multi-axis control system
- d) Operate the servo assist function

13. 2 RS485 communication protocol description

Provide RS485 communication interface, the wiring is detailed in CN6, and the master-slave communication is carried out by the international standard Modbus communication protocol. Users can achieve centralized control through PC/PLC, control PC, etc. to suit specific application requirements.

The Modbus serial communication protocol defines the frame content and usage format for asynchronous transmission in serial communication. These include: host polling and broadcast frame, slave response frame format; host organization frame content includes: slave address (or broadcast address), execution commands, data and error check. The response of the slave is also the same structure, including: action confirmation, return data and error check. If the slave encounters an error while receiving a frame, or fails to complete the action requested by the host, it will organize a fault frame as a response to the host.

The communication protocol is an asynchronous serial master-slave Modbus communication protocol. Only one device (host) in the network can establish a protocol (called "query/command"). Other devices (slave) can only respond to the host's "query/command" by providing data, or according to the host's "query/command". The host here refers to a personal computer (PC), an industrial control device or a programmable logic controller (PLC), etc. The slave refers to a servo drive or other control device having the same communication protocol. The host can communicate with a slave separately and broadcast information to all slaves. For a host "query/command" that is accessed separately, the slave must return a message (called a response). For the broadcast message sent by the host, the slave does not need to feed back the response message to the host.

13. 3 Communication frame structure

Modbus only supports RTU transmission mode. The user can configure the serial communication parameters (baud rate, check mode, etc.).

Each 8Bit byte in the message frame contains two 4Bit hexadecimal characters.

Start bit	Device address	command	data	CRC check	Terminator
T1-T2-T3-T4	8Bit	8Bit	N 8Bit	16Bit	T1-T2-T3-T4

In this mode, the message transmission starts at least at a pause interval of 3.5 characters. During transmission, the network device continuously detects the network bus, including the pause interval. When the first field (address field) is received, the corresponding device decodes the next transmitted character, and if there is a pause of at least 3.5 characters, it indicates the end of the message.

In RTU mode, the entire message frame must be transmitted as a continuous stream. If there is a pause time

of more than 1.5 characters before the frame is completed, the receiving device will refresh the incomplete message and assume that the next byte is the address of a new message area. Similarly, if a new message begins with the previous message in less than 3.5 character times, the receiving device will consider it a continuation of the previous message. If the above two situations occur during the transmission, the CRC check will inevitably generate an error message and feed back to the sender device.

13. 4 Command code and communication data description

In the communication command, the data address read and written is the hexadecimal number of the parameter name, for example, the address of the inertia ratio Pn100 is 0x0100.

(1) Command code: 03H

Function: Read N words (Word can read up to 16 words in succession).

For example, if the servo drive with the slave address 01H reads the address e003 and reads two consecutive words, the structure of the frame is described as follows.

Host command information:

START	T4 T0 T2 T4 / 2 5 button of transmission from
-	T1-T2-T3-T4 (3.5 bytes of transmission time)
ADDR	01H
CMD	03H
Read start address high	e0H
Read start address low	03H
high number of data (in word)	00H
low number of data is (in word)	02H
CRC CHK low bit	03H
CRC CHK high bit	СВН
END	T1-T2-T3-T4 (3.5 bytes of transmission time)
The slave responds to the message:	
START	T1-T2-T3-T4 (3.5 bytes of transmission time)
ADDR	01H
CMD	03H
Number of bytes	04H
The high content of the starting data address 03F2H	3АН
Content status of the starting data address 03F2H	9АН
The content of the second data address 03F3H is high	00Н
The lower content of the second data address 03F3H	05H
CRC CHK low bit	16H
CRC CHK high bit	C7H

END	T1-T2-T3-T4 (3.5 bytes of transmission time)

(2) Command code: 10H

Function: Write N words (Word), $N \ge 2$.

For example, write 100 to the 0100H address of the slave address 01H servo drive and 400 to the 0101H address of the slave address 01H servo drive.

The structure of the frame is described as follows:

Host command information:

START	T1-T2-T3-T4 (3.5 bytes of transmission time)	
ADDR	01H	
CMD	10H	
Write data address high	01H	
Write data address low	00H	
The number of data is high (in word)	00H	
Number of data status (calculated in word)	02H	
Number of bytes	04H	
The first word high of the data content	00H	
The first word of the data content is low	64H	
The second word high of the data content	01H	
The second word of the data content is low	90H	
CRC CHK low bit	BEH	
CRC CHK high bit	1CH	
END	T1-T2-T3-T4 (3.5 bytes of transmission time)	
The slave responds to the message:		
START	T1-T2-T3-T4 (3.5 bytes of transmission time)	
ADDR	01H	
CMD	10H	
Write data start address high	01H	
Write data start address low	00H	
The number of data is high (in word)	00H	
Number of data status (calculated in word)	02H	
CRC CHK low bit	40H	
CRC CHK high bit	34H	
END	T1-T2-T3-T4 (3.5 bytes of transmission time)	

13. 5 Communication frame error check mode:

The error check mode of the frame mainly includes two parts of the check, that is, the bit check of the byte (odd/even check) and the entire data check of the frame (CRC check or LRC check).

13. 5. 1 Byte Bit Check

Users can choose different bit verification methods as needed, or they can choose no parity, which will affect the parity bit setting of each byte.

The meaning of even parity: an even parity bit is added before data transmission to indicate whether the number of "1" in the transmitted data is odd or even. When it is even, the check position is "0", otherwise it is set. It is "1" to keep the parity of the data unchanged.

The meaning of the odd check: an odd parity bit is added before the data transmission to indicate whether the number of "1" in the transmitted data is odd or even. When it is odd, the check position is "0", otherwise it is set. It is "1" to keep the parity of the data unchanged.

For example, you need to transfer "11001110", the data contains 5 "1", if you use even parity, its even parity bit is "1", if you use odd parity, its odd parity bit is "0", transmission In the case of data, the parity bit is calculated at the position of the check bit of the frame, and the receiving device also performs parity check. If the parity of the accepted data is found to be inconsistent with the preset, it is considered that the communication has an error.

13.5.2 CRC check method --- CRC (Cyclical Redundancy Check)

Using the RTU frame format, the frame includes a frame error detection field calculated based on the CRC method. The CRC field detects the contents of the entire frame. The CRC field is two bytes and contains a 16-bit binary value. It is calculated by the transmission device and added to the frame. The receiving device recalculates the CRC of the received frame and compares it with the value in the received CRC field. If the two CRC values are not equal, the transmission has an error.

The CRC is first stored in 0xFFFF, and then a procedure is called to process the consecutive 6 or more bytes in the frame with the values in the current register. Only the 8Bit data in each character is valid for the CRC, and the start and stop bits as well as the parity bit are invalid.

During the CRC generation process, each 8-bit character is individually different from the register contents (XOR), and the result moves to the least significant bit direction, and the most significant bit is padded with 0. The LSB is extracted and detected. If the LSB is 1, the register is individually or different from the preset value. If the LSB is 0, it is not performed. The entire process is repeated 8 times. After the last bit (bit 8) is completed, the next octet is individually different from the current value of the register. The value in the final register is the CRC value after all the bytes in the frame have been executed.

This calculation method of CRC adopts the international standard CRC check rule. When editing the CRC algorithm, the user can refer to the CRC algorithm of the relevant standard to write a CRC calculation program that truly meets the requirements.

13. 6 Error message response

When the slave responds, it uses the function code field and the fault address to indicate whether it is a normal response (no error) or an error (called an objection response). For a normal response, the slave responds with the corresponding function code and data address or sub-function code. In response to the objection, the device returns a code equivalent to the normal code, but the first position is logic 1.

For example, if a message sent by a master device to a slave device requires reading a set of servo driver function code address data, the following function code will be generated:

0000011 (hex 03H)

For a normal response, the slave responds with the same function code. In response to the objection, it returns:

1 0 0 0 0 0 1 1 (hexadecimal 83H)

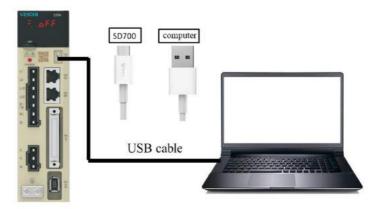
In addition to the modification of the function code due to an objection error, the slave device will respond with a one-byte exception code, which defines the cause of the exception.

After the master application responds with an objection, the typical process is to resend the message or make a command change for the corresponding failure.

Modbus exception code		
Code	name	Meaning
01H	Illegal function	When the function code received from the host computer is an operation that is not allowed, this may be because the function code is only applicable to the new device and is not implemented in the device; at the same time, the slave may also process the request in an error state.
02H	Illegal data address	For the servo drive, the request data address of the upper computer is an unallowable address; in particular, the combination of the register address and the transmitted byte number is invalid.
03H	Illegal data value	The received data value exceeds the range of the address parameter, causing the parameter change to be invalid.
11H	Parity error	When the RTU format CRC check bit or the ASCII format LRC check bit is different from the check calculation number of the lower computer in the frame information sent by the host computer, the check error information is reported.

14 Host Debugging Instruction

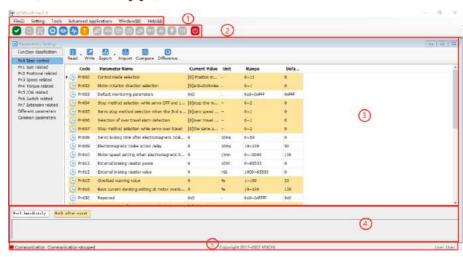
14. 1 System Requirements


14. 1. 1 System Configuration

- 1. When the user uses the software for the first time, please confirm whether the NET3.5 and NET4.0 frameworks are installed. This is a prerequisite; otherwise the software cannot be opened. But for Win7 and above operating systems, there is no need to install NET 3.5 and NET 4.0 frameworks.
 - 2. The host computer system currently supports USB communication debugging.
 - 3. The system only supports servo SD700 series servo product debugging;
- 4. Verify that the "Use FIPS-compliant algorithms for encryption" option is set to disabled (Control Panel Administrative Tools Local Security Policy Security Options Use FIPS-compliant algorithms for encryption disabled)

14.1.2 Connection Configuration

The servo driver is connected to the computer through the communication connector, and the interface type is USB. Basic configuration:


1. Anti-jamming Android micro phone data cable.

- 1. Connection between PC and SD700 servo drive via Android micro mobile phone data cable
- 2. Click My Computer Manage Device Manager and find Other devices
- 3. Right-click and select "Update Driver", select "Browse calculations to find driver software"
 - 4. Manually select the upper machine installation package file for driver installation.

14.2 Main Interface

The main interface includes menu bar, toolbar, function display area, information bar, status bar and other functions, as shown in the following figure;

①Menu bar

The menu bar includes functions such as files, settings, tools, advanced applications, windows, and help;

[File]: Open and exit the system;

[Settings]: user rights, service personnel rights, developer rights;

[Tools]: parameter settings, real-time monitoring, digital oscilloscope, fault information, screenshots and other functions:

[Advanced applications]: inertia identification, JOG, program JOG, homing, mechanical characteristics, FFT analysis, single parameter adjustment, intelligent adjustment, offset adjustment;

[Window]: Cascading display, horizontal display, vertical display, all off;

[Help]: about;

2[Toolbar]

The toolbar includes communication disconnection, communication connection, JOG, program JOG, soft reset, factory reset, parameter setting, monitoring parameters, digital oscilloscope, fault maintenance, screenshot, mechanical characteristics, FFT analysis, intelligent adjustment, offset adjustment, single parameter adjustment, exit and other functions;

③Function display area

The function display area is used as a form container to provide sub-window display of reading and writing parameters, monitoring parameters, digital oscilloscope, fault maintenance, and function debugging;

4 Information columns

[Some parameters] show supplementary explanation

(5)Status bar

The status bar includes the current communication status and servo work status.

14. 3 Features

(1) File

Documents include open, exit, etc.;

(2) Turn on

Open function: open the existing file;

Step:

Click the menu bar [File] -> [Open] -> [Select the current system directory folder Test32] -> [Select VCDGSmsyc.vcb file];

(3) Exit

Exit function: Close the current system

Step:

Click [Exit] in the file column, exit the system, or click [Exit System] on the motor toolbar to exit the system.

(4) Read and write parameters

245

Read and write parameters include functions such as reading and writing of function codes, import, and export;

SD700 Series Servo Technical Manual

Step:

1. Start reading and writing parameters interface:

Click on the menu bar "Tools" -> "Parameter Settings"

The pop-up read/write parameters (parameter setting) interface is displayed in the display area, as shown in the following figure:

1- Toolbar

The toolbar includes reading the current page function code, reading all page function codes, writing function codes to EERPOM, exporting the current page function code, exporting all function codes, importing function codes in batches, comparing the differences of two file parameters and finding out modified parameters, as shown below:

2-Multi page

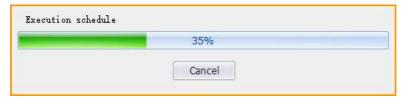
Each page is displayed in different functional groups. At the same time, common parameters and different parameter pages are added to facilitate viewing of function codes.

3-function code

The function code is a specific function and provides relevant information such as the current state, name, current value, unit, default value, minimum value, maximum value, and attribute, etc. When a row is clicked, the corresponding function code comment is provided as below;

4- Information column

Display parameter modification after the effective mode and function code supplementary explanation;

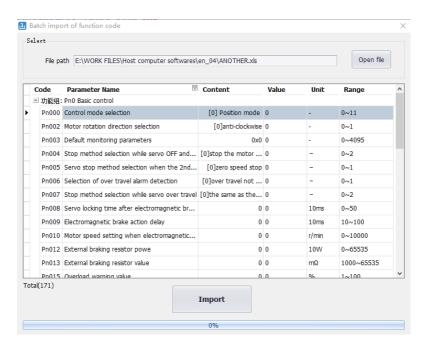

Function code reading

Function code reading can be read individually or in batches.

Step:

1. Current group read: switch to a group of parameters, left-click on [read] -> select [current group], read the current group parameters

2. Read all: Left-click on [Read] -> Select [All] to read all parameters and the pop-up dialog box will display the progress of the read function code in the form of a progress bar; as shown in the following figure:


Function code write/import

Function code writing can be individually written.

Step:

- 1. write individually: select a function code, click on the column corresponding to the current value, click twice in succession, it may enter the editing state, enter the value then click on Enter, the system will automatically send a write command, or directly click [Write] on the toolbar after editing to finish writing the parameters.
 - 2, Steps to import in batches:

Click [Import] → [Select File] -> Click [Import], as shown in the following figure:

Function code export

Function code export can export current and all function codes:

Step:

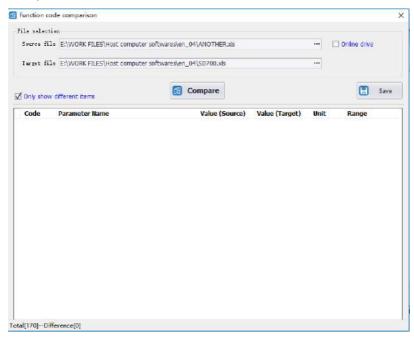
1. Click on the toolbar icon to select the current group and complete the current group export; or select all to complete the export of all function codes.

Find different function codes

Finding different function codes can find out the modified parameters to facilitate user analysis

Step:

1. Click on the toolbar icon to find out the modified parameters. At the same time, the pop-up dialog box will display the progress in the form of a progress bar as shown in the following figure.

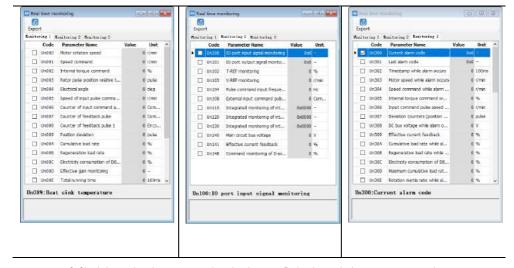


Function code comparison

Compare two sets of exported function codes

Step:

1. Click on the toolbar icon , the function code comparison file selection interface appears. Select the source file and the target file respectively then click on [Compare], and the following interface appears. Click on Save to save the two parameters of the two files.



14. 4 Real-Time Monitoring

Real-time monitoring provides real-time monitoring of monitoring parameters and I/O status, as well as current fault information:

Step:

1. Start the real-time monitoring interface. As shown in the figure below, the monitoring parameters are divided into three groups. The monitoring parameters can be added to the common parameters.

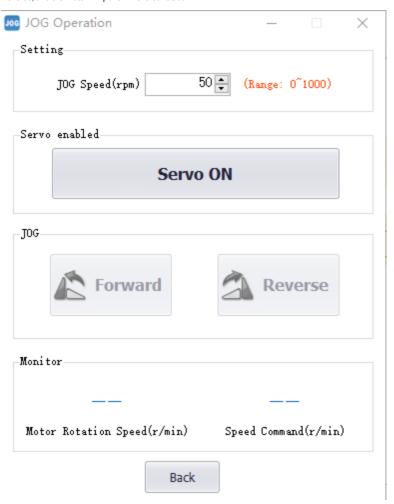
Check the monitored parameters and monitor the servo. During the monitoring process, you can also export and save the monitoring content.

Monitoring parameter export

The export of monitoring parameters is a way to output and save the monitoring parameters, which can facilitate the customer to save the monitored parameters.

Step

Check the monitored parameters. If you want to export all parameters in the current group, right-click in the
monitored parameters area, select All group, and then click Export. Select the save path and save the monitoring
data in the EXCEL file format.

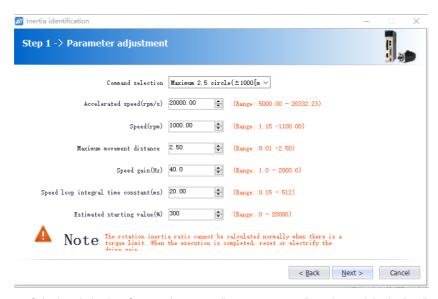

14. 5 Auxiliary Functions

14.5.1 JOG

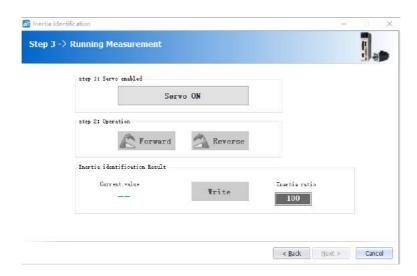
The JOG operation is a function to confirm the operation of the servo motor by driving the servo motor at the previously set JOG speed (rotation speed) without connecting the host device. By performing this operation confirmation, it is possible to confirm whether or not the connection to the wire is improper and whether the servo motor has failed.

Step:

1. Click the icon a on the main interface of the host computer to enter the jog operation interface. As shown in the left figure below, click Start, and then click forward rotation. The servo will execute forward rotation, click Reverse, and the motor will perform reverse rotation.



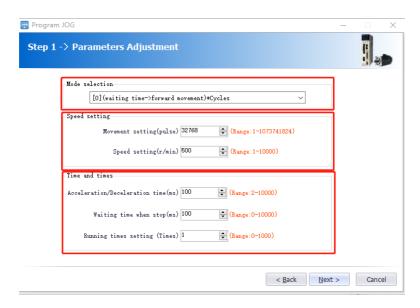
14.5.2 Inertia Identification


The inertia Identification function allows the servo unit to perform automatic operation (forward and reverse reciprocating motions), and estimates the moment of inertia of the load during operation.

Step:

1. Click [Inertia Identification]→[Next] on the host interface to enter the following interface in the inertia identification operation process, as shown in the following figure.

2. As shown in the above figure, set the corresponding parameters according to the actual situation (usually keep the default), and click [Next] → [Write] → [Next] → [Enable] → [Forward] → [Reverse] After the forward rotation is repeated three times, the final inertia identification result is displayed, as shown in the following figure.

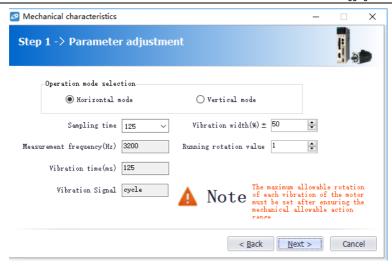

3. Click [Write]→[Next]→[Complete] to finish the inertia recognition process.

14.5.3 Program JOG

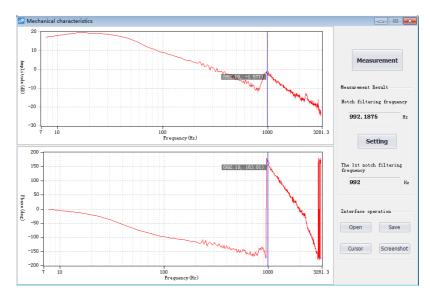
The JOG operation of the program refers to the function of executing the continuous operation in the previously set operation mode (moving distance, moving speed, acceleration/deceleration time, waiting time, number of movements). This function is the same as the JOG operation, and the upper apparatus is not connected during the setting. The servo motor operation can be confirmed and a simple positioning operation can be performed.

Step

1. Click on of the main interface of the host computer to enter the program jog operation process, and then click on [Next] to enter the parameter adjustment interface and set related parameters as required. The detailed interface is as shown in the figure below.


4. After setting the corresponding parameters, click on [Next] → [Write] → [Next] → [Enable] → [Execution] → [Next] → [Complete]. The program JOG operation process ends.

14.5.4 Mechanical Characteristics


Mechanical analysis characteristics mean that the servo unit performs automatic operation (positive and negative reciprocating motion) without issuing an instruction from the host computer, and the function of estimating the common vibration frequency of the mechanical system during operation is performed.

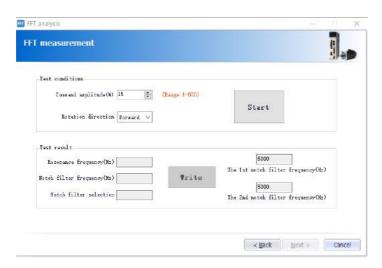
Step:

1. Click on of the main interface of the upper computer to enter the mechanical characteristics analysis operation process, click on [Next] → [Next] to enter the parameter adjustment interface, and adjust the corresponding parameters according to the actual situation, as shown in the following figure.

2. Click [Next] \rightarrow [Write] \rightarrow [Next] \rightarrow [Enable] \rightarrow [Forward] \rightarrow [Enable] \rightarrow [Reverse] \rightarrow [Next] \rightarrow [Complete] to enter the mechanical properties FFT analysis interface, as shown in the figure below

From the above figure, you can analyze the frequency, amplitude, and phase of the resonance frequency.Click on [Settings] to set the frequency of the first notch filter. After the setting is completed, the screen is closed.Mechanical properties are completed.

14.5.5 FFT Analysis


EasyFFT transfers the periodic waveform commands from the servo unit to the servo motor and rotates the

253 SD700 Series Servo Technical Manual

servo motor slightly for a certain time to cause the vibration of the machine. The servo unit detects the resonance frequency based on the vibration generated by the machine, and then sets the corresponding notch filter according to the resonance frequency. The notch filter effectively removes high-frequency vibrations and noise.

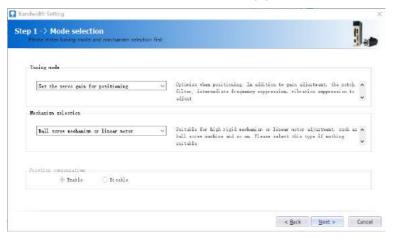
Step:

 Click on to enter the FFT measurement interface. Set the command amplitude and rotation direction in the measurement conditions. Click to start measurement and you can measure the frequency of the first notch filter, as shown in the figure below.

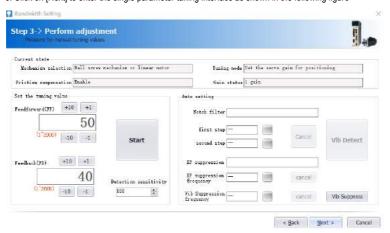
- Click on [Start] to measure the first notch, and then click on [Write] to write the frequency of the first notch filter.
- 3. Click on [Start] to measure the second notch, and then click on [Write] to write the second notch filter frequency
 - Click on [Next] → [Done] to close the operation interface and the FFT analysis is completed.

14.5.6 Bandwidth setting

Bandwidth setting is the method of inputting a speed command or position command from the host device and manually adjusting it while it is running. By adjusting one or two values via bandwidth setting, the relevant servo gain settings can be automatically adjusted.


Bandwidth setting adjusts the following items.

- Gain adjustment (speed loop gain, position loop gain, etc.)
- · Filter adjustment (torque command filter, notch filter)
- · IF suppression control


Step:

1. Click of the main interface of the upper computer to enter the single parameter adjustment prompt interface, click on [Next] to enter the parameter adjustment interface, select the organization selection according to SD700 Series Servo Technical Manual

the actual situation, and select the desired mode, as shown in the following figure.

- 2. Click on [Next] to enter the setting interface of inertia moment ratio and set the inertia ratio (inertia ratio can be obtained through inertia identification function);
 - 3. Click on [Next] to enter the single parameter tuning interface as shown in the following figure

- 3. Click on [Adjust Start] to tune the tuning value (generally increase). During the process of increasing the tuning value, the servo will vibrate. At this time, vibration detection will be performed automatically. If not, operation can be performed manually, and the tuning value can be set in combination with the figure captured by the digital oscilloscope, or 80% of the tuning value of the motor can be selected as the tuning value. Specific or combined with the actual site requirements for adjustment settings.
- 4. In the tuning process, when the servo motor is vibrating, it will detect the resonance frequency and the intermediate frequency suppression frequency. After the tuning is completed, click on [Next] to enter the auto tuning completion interface and click on [Finish] to complete the single parameter adjustment operation.

14.5.7 Offset Adjustment

Offset adjustment is divided into two parts:

- 1: Speed/torque command offset (automatic/manual) adjustment
- 2: Motor/current detection signal offset (automatic/manual) adjustment

Step:

- 1. Click on the main interface of the host computer to enter the offset wizard interface. Click on [Next] to enter the offset adjustment function selection interface, select the function you need to adjust, and click on [Next] to enter the adjustment interface.
- 2. Set the adjustment method, click on [Next], click on [Finish], the offset adjustment screen closes, and the adjustment process ends.

14.5.8 Back to Origin

The origin search is a function that determines the position of the origin pulse (Z phase) of the incremental encoder and stops at this position.

Step:

1. Click on the main interface of the host computer to enter the origin setting wizard interface. Click [Next] to enter the execution instruction interface, as shown in the following figure.

2. Click [Enable] to enable the servo motor to enter the enable state, and then click [Forward Run] or [Reverse Run] to perform the origin search. After the search is completed, click [Next] to enter the back to origin setting interface and click [Completed] to return to origin operation

14.5.9 Soft Reset (Same as Power on again)

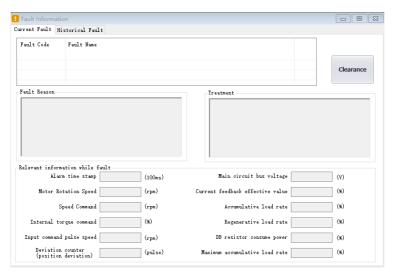
The function could reset the servo unit from the inside by software. Used to re-power on or reset the alarm after changing the parameter setting. It is also possible to validate the setting without turning the power back on.

Step:

Click on the main interface of the host computer to perform a soft reset operation.

14.5.10 Restoring the Factory Value

The function is used to restore the parameter to the factory setting. Parameter initialization should note the problems as bellow:


- 1. Initialization of the parameter setting value must be performed during the servo OFF and it cannot be executed during the servo ON.
 - 2. For the setting to take effect, the servo unit must be turned on again after the operation.

Steps:

Click on the main interface of the upper computer to restore the factory value. After the operation is completed, power it on again.

14.5.11 Fault Information

The fault information can display current faults, historical faults, causes of faults, handling measures, information related to faults, and clearing of fault information. Click 10 to display the following interface

According to the above information, the servo fault is repaired.

14. 6 Digital Oscilloscope

Digital oscilloscopes collect data at high speeds and display them graphically to analyze data.


Steps:

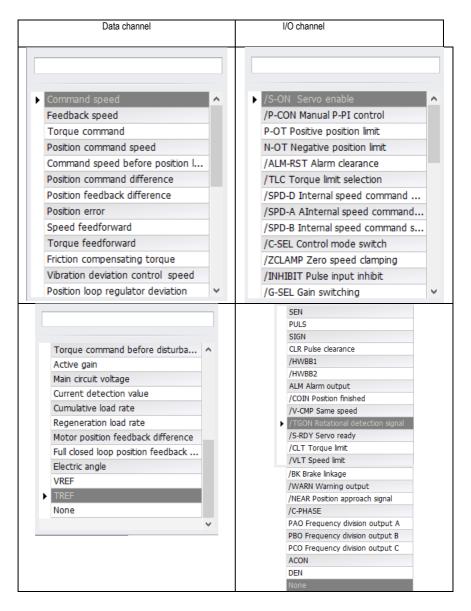
1, start the data oscilloscope interface (provide two ways):

Method one: Click on the main menu of the host computer menu [Tools] -> [Oscilloscope], start the oscilloscope;

Method 2: Click the icon
on the main interface of the host computer to start the oscilloscope.

3, display data oscilloscope interface, as shown below

1 - Toolbar


The toolbar includes open, save, full screen, style (switch to display background), settings, screenshots, legend, timeline, back, forward, rewind, fast forward, zoom in, zoom out, adaptive, zero position, dot/line, measurement and other functions

2 - Curve display area

Different curves provide visual display and measurement results for display;

3-channel setting and trigger setting

It provides channel-related parameter settings and trigger related parameter settings. Parameter setting includes trigger condition settings and channel settings; data channel detailed functions are as follows

4 - Waveform display selection area

It provides selection and display of desired waveforms.

5 - Digital display of measured value

It provides display of current value, effective value, average value, maximum value, minimum value, peak value, etc.

6 - Record button operation button

It's used to start and stop recording

7 - Collection method selection

It's used to choose the mode of wave recording, real-time and triggered acquisition

14. 6. 1 Real-Time Acquisition

Real-time acquisition is displayed in real time in the form of waveforms on the servo operating conditions.

Steps:

1. Start: Select real-time acquisition mode, set the channel settings, as shown in the figure below, then click the record button start recording, and the status of the icon changes to

2. Stop: click on the record button to stop recording, and the status of the icon changes to

14.6.2 Trigger Acquisition

The trigger acquisition is based on the trigger condition and the acquisition cycle and makes the servo operation status displayed in the form of a waveform.

Steps:

1. Select the trigger for the acquisition mode. After the data channel and trigger conditions are set, as shown in the following figure, click the record button which triggers the start of recording.

Note: After setting the trigger condition parameters, the terminal receives the trigger condition and will automatically judge according to the conditions.

- 2. After the waveform to be triggered is received, the waveform will remain in the last state; the record button will change to
 - 3. If you need to trigger again, you need to start recording again;


14.6.3 Graphic Operations

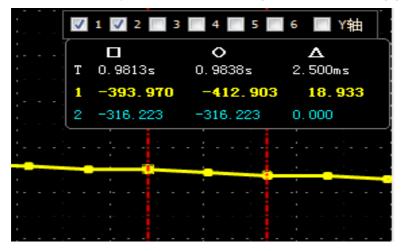
Graphic operations include X/Y zoom, XY label value, Y axis curve point and point display/hide and measurement, X axis curve point and point display/hide and measurement, curve zoom in/out, curve shift, curve zero adjustment, curve adaptive adjustment, graphics attribute settings and other functions

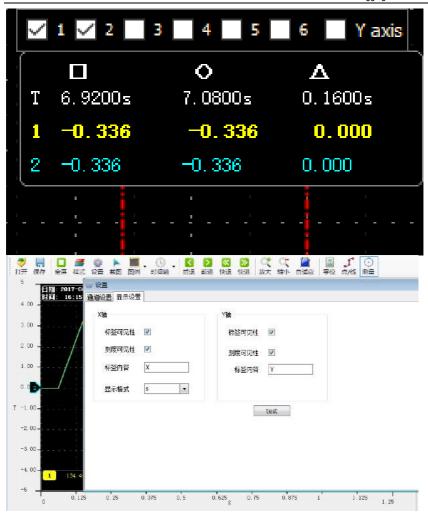
X axis cursor

Steps:

1. Click on the toolbar icon , the graph will automatically display the two axes of the X-axis, and the upper right corner will automatically display the two axis values corresponding to the X-axis cursor, the difference between the data and real time as shown in the figure below:

Y axis cursor


The Y-axis has two coordinate axes and functions are similar to the X-axis.


1. Click on the toolbar icon to check the Y axis. The graph will automatically display the two axes of the Y axis. The two axes of the X axis cursor are automatically displayed in the upper right corner. The data difference between the two axes is shown in the figure below:

XY digital display

There are multiple axes on the Y axis, which can be selected according to the needs. Through the measurement function, the mouse will display the XY value of the current point in digital form as shown in the following figure.

Y axis scale display/hide

The Y coordinate scale is displayed as a fixed value, and the Y axis scale display/hide can be modified through the toolbar settings.

Steps:

1. Click the top right corner of the oscilloscope interface and and in the Y axis option, check the label visibility and scale visibility.

Y-axis curve display/hide

The Y-axis has multiple curves, which can be selected according to the channel. The Y-axis curve is displayed by default.

Steps:

1. In the interface of digital oscilloscope, remove the unnecessary waveform options, and the corresponding Y-axis curve will be automatically hidden in the graphics; for example, let the position instruction speed waveform be hidden, remove the check signal in the corresponding options as shown in the following figure.

Curve zooms in/out

Steps:

- 1. Zoom in the area: Press the left mouse button and pull a zone from the upper left corner to the lower right corner, this area can be enlarged.
- 2. Zoom out the area: Press the left mouse button and pull a zone from the lower right corner to the upper left corner, this area can be reduced.
 - 3. Zoom in curve X/Y: click on the button 2;
 - 4. Zoom out curve X/Y: click on the button [9];
 - 5. Zoom in curve X: Click on the button to decrease the time in the options.
 - 6. Zoom out curve X: Click on the button to increase the time in the options.
- 7. Zoom in curve Y: Click on the gain option of the corresponding curve to decrease the gain value. As shown in the figure below, you can adjust the gain of six Y curves.
- 8. Zoom out curve Y: Click on the gain option of the corresponding curve to increase the gain value. As shown below:

Curve translation

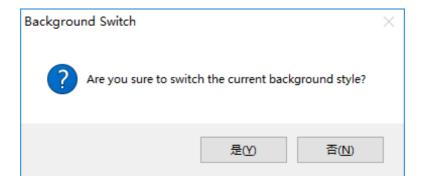
Steps:

- 1. Horizontal panning of the curve: left-click on the toolbar $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$, move left and right and move right and left fast (Note: When you move to the right to the maximum scale point, it will no longer move to the right).
 - 2. A single curve vertical translation: left-click and hold the corresponding curve number and drag it up and down

to perform a vertical translation.

Graphic import/export

According to the current graph, data and pictures can be exported at the same time. Only the bak format export is supported. In addition, the exported data can be imported for viewing.


Steps:

- Data import: Click the digital oscilloscope toolbar icon lop up the open dialog box and find the existing file;
 - 2. Data export: Click the toolbar icon late to pop up the save dialog and save it to the specified path.

 Background:

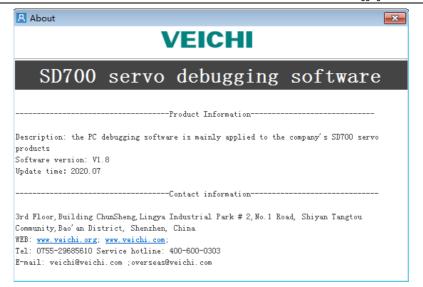
Digital oscilloscope display area provides two backgrounds, black color and white color Steps:

1. Click the icon on the oscilloscope toolbar to display the prompt interface. As shown in the figure below, click OK to switch the display interface.

14.7 Others

14.7.1 Window Display

The window display is divided into: cascade, horizontal, vertical display, all off;


- 1. Cascade: click on the main menu of the host computer window [window] -> [cascade display];
- 2, level: click on the host computer interface menu bar [window] -> [horizontal display];
- 3, vertical: click on the main interface of the host computer menu window [window] -> [vertical display];
- 4. Close: Click on the main window of the host computer menu bar [Window] -> [Close all];

14.7.2 Help

It provides servo debugging software version and other information.

Steps:

Click on the menu bar [help] -> [about], the software version information appears, as shown below

Scan the following QR code to download the relevant electronic files:

SD700 Servo product catalog